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Abstract

We present and study the graph-simplex correspondence—a tool providing a series of relation-
ships between weighted, undirected graphs on n vertices and simplices in (n−1)-dimensional
Euclidean space. The core of the correspondence is a bijection between graphs and hyper-
acute simplices, first uncovered by Miroslav Fiedler. We consolidate Fiedler’s work on the
subject and expand on it in several ways.

The first relates purely to the mathematical properties of the correspondence. Among
other things, we extend the correspondence to the normalized Laplacian matrix L̂G (whereas
previously only the combinatorial Laplacian, LG, had been used), develop new equations
and inequalities relating aspects of the simplex to those of the graph, and give an isometry
between a graph’s “inverse combinatorial simplex” and an n-dimensional polytope arising
from the Laplacian’s pseudoinverse.

Secondly, we examine the algorithmic underpinnings and consequences of the correspon-
dence. We begin by demonstrating that it can be used to draw conclusions about the com-
putational complexity of various geometric problems. We then provide lower bounds on
the complexity of transitioning between graphs and simplices, and end by studying low di-
mensional representations of the simplices. This provides theoretical justification for recent
empirical work on Laplacian eigenmaps.

Of possible independent interest, we provide a formula for the non-zero eigenvalues of
L̂G in terms of the total weight of spanning trees in the graph G, relate the volume of an
arbitrary simplex to the eigenvalues of the Gram matrix of its dual simplex (an object we
introduce), and give an equation for the adjugate of L̂G in terms of the weights of the vertices
in G.

Keywords: Graph theory, simplex geometry, Laplacian matrix, effective resistance, convex
polyhedra.
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Lay Summary

The most significant features of mathematical research, to the astonishment of many, do not
involve generating contrived calculus questions with which to torture sleep-deprived under-
graduates. Instead of course, one focus of such research is on further developing its different
branches—geometry, probability, number theory, etc. Another concern, however, is to seek
connections between these different areas. Such connections are elusive, but often point to
some deeper and beautiful (stay with me) mathematical structure.

This dissertation is concerned with research of the latter type. During his illustrious
career, Miroslav Fiedler began exploring what we are calling the “graph-simplex correspon-
dence”. The reader is invited to draw several dots on a piece of paper and connect each
one with several (or all) of the others by drawing lines between them. There; you have just
succeeded in drawing a graph. Your graph can be described by listing the dots (formally
called vertices), and whether or not there is a connection between them. Regardless of how
far apart the dots are on the page are, we are simply interested in whether or not there is a
connection between each pair of vertices. Thus, a graph lacks inherent geometry; it can be
described with lists only. A simplex, on the other hand, is essentially a triangle but gener-
alized to higher dimensions. Is it therefore inherently geometric, which makes a connection
between graphs and simplices all the more surprising.

When studying an abstract topic, one can never be sure whether the work will remain only
of interest to theoreticians or will find some practical application. That being said, we expect
this research to be highly applicable—it will most likely help develop interstellar travel, 6G
networks, and clarify broad macroeconomic trends. Just kidding. We do hope, however,
that this work will serve to inspire researchers to include the graph-simplex correspondence
in their mathematical toolkit when investigating graphs and/or simplices, and will thereby
contribute to future research.
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〈x, σ̂+
i 〉+ βi = 0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 A simplex T ⊆ R2 and its corresponding Steiner circumscribed ellipsoid in
orange (light) and circumscribed sphere in purple (dark). The arrows illustrate
the semi-axes of the ellipsoid. The purple point is the centre of the sphere—
note that it does not necessarily coincide with the origin of the ellipsoid. . . . 64

4.2 The resistive embedding (in orange; light) of a graph with three nodes sits in
a plane (gray) which is parallel to the all ones vector. . . . . . . . . . . . . . 67

4.3 Random walk dynamics plotted as points in the simplex. Figures (a) and
(b) are plotted using the normalized simplex; figure (c) uses the normalized
simplex. The underlying graph of Figure (a) has edges (1, 2), (2, 3), (3, 4),
(2, 4), that underlying (b) edges (1, 2) and (2, 3) and that of (c) is the complete
graph K4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Illustration of the relationships between the classes NP, NP-hard, and NP-
complete. “Poly-time” refers to problems with polynomial time solutions.
Such algorithms can trivially be verified in polynomial time, hence are a subset
of problems in NP. We emphasize that the diagram is for intuitive purposes
only, and may not reflect the true relationships between these classes. For
example, in the unlikely case that P=NP (i.e., all problems in NP are solvable in
polynomail time), then the regions “Poly time”, NP and NP-complete coincide.
Additionally, the relative sizes of the regions above say nothing about their true
cardinalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 (a) A connected graph. (b) Two of its independent sets; one in red (dark) and
one yellow (light). The red set constitutes a maximum sized independent set.
(c) Two of its cliques; one in blue (dark), one turquoise (light). The blue set
constitutes a maximum sized clique. . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Summary of results for precise mappings. A slash refers to a difference in
runtimes when the graph is available versus when it isn’t. The quantity before
the slash indicates the runtime without the graph, after the slash the runtime
with the graph. A question mark or empty square indicates that no bounds
are yet known. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii



C.1 The six unique unweighted graphs on four vertices, up to isomorphism, and a
comparison of all of their simplices. Below each graph in the first row are its
two combinatorial simplices (SG and S+

G ), then its two normalized simplices
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SG (ŜG) (Normalized) Simplex of G Section 3.2

S+
G (Ŝ+
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Chapter 1

Introduction

Confusion is the natural state of the mathematician.

— Lior Silberman

What if I slept a little more and forgot about all this
nonsense.

— Franz Kafka, The Metamorphosis

This thesis is concerned with uniting two fundamental mathematical objects: the graph
and the simplex. A graph is fundamentally a combinatorial object—it can be described purely
by means of finite sets and must not refer to any underlying geometric space. Simplices, on the
other hand, are inherently geometric. Essentially a high dimensional triangle, any complete
description of a simplex must include certain geometric information; the distance between its
vertices, for example. Thus, a simplex cannot be divorced from an underlying metric space.

The dubious reader may interject that graphs can of course be viewed geometrically. For
instance, he or she continues, it is well-known that the shortest path between two vertices
constitutes a metric on the graph. We in turn interrupt the interrupter and remark that while
graphs can be given geometric interpretations, it is not necessary that they are. Indeed, a
graph can be described by two finite lists: a list of its vertices and a second of the connections
between these vertices (perhaps with weights given to the edges). No underlying geometric
space need be defined.

Due to the combinatorial nature of the graph and the geometric nature of the simplex, a
connection between the two objects might seem unlikely a priori. It is precisely this fact which
makes such a connection worth studying. The original link between graphs and simplices
was uncovered by Miroslav Fiedler in his 1993 paper entitled “A geometric approach to the
Laplacian matrix of a graph” [Fie93]. Here he introduced the machinery needed to define
what will be a central object in our study of the relationship between graphs and simplices: a
bijection between connected, weighted graphs and hyperacute simplices. However, we will be
concerned with more than this single bijective mapping. Indeed, what we will term the graph-
simplex correspondence includes four (not necessarily bijective) mappings between graphs and
simplices. They arise as natural extensions of Fiedler’s original work.

Unfortunately (we believe) for the mathematical community, Fiedler’s investigations in

1



Chap. 1. Introduction Prior Work

this area have gone relatively unnoticed. Convinced as we are of the beauty and utility of
such work, this dissertation aims to present Fiedler’s results in a concise, clarifying, and
self-contained fashion, expand on the mathematical foundations of the correspondence, and
explore new applications thereof. Our primary motivation is to convince the reader that the
graph-simplex correspondence is a useful tool for studying graphs and simplices, and can shed
light on various aspects of both which are overlooked by other methods. Given the ubiquity
of graphs in the mathematical sciences, both in theory and in application, the possibility of
a new tool with which to analyze them is highly appealing.

§1.1. Prior Work

As we stated above, Miroslav Fiedler was the “primary mover” in uncovering the graph-
simplex correspondence [Fie93, Fie05, Fie11]. A lifelong geometer [Vav95], Fiedler made many
contributions to both simplex geometry [Fie54, Fie55, Fie56], matrix theory [Fie98, Fie95],
and graph theory [Fie73, Fie75, Fie76, Fie89]. However, his work connecting graph theory and
simplex geometry remained largely unnoticed until very recently, when Devriendt and Van
Mieghem used the simplex geometry of the graph as intuition behind investigating a graph’s
“best conducting node” [VMDC17] and, in a later work, provided a summary of Fiedler’s
results [DVM18]. All of this work is concerned with a connected and possibly weighted graph
G and what we will henceforth refer to as its combinatorial simplices, denoted SG and S+

G .
(This is in contrast its normalized simplices, which we will define and explore later.)

Fiedler uncovered the graph-simplex correspondence by means of a more general rela-
tionship between matrices and simplices. In particular, he associated with each symmetric
matrix Q whose range space is orthogonal to the all ones vector (i.e., Q1 = 0) a unique (up
to congruence) hyperacute simplex. Since the Laplacian matrix LG of a connected, weighted
graph G obeys this constraint, this associates with each such graph a hyperacute simplex S+

G .
For reasons which will become clear later, we call S+

G the inverse (combinatorial) simplex
of G. Fiedler associated LG and S+

G by means of a block matrix equation which involved
several somewhat complex components, including the Gram matrix of the outer normals of
the simplex and the radius of its circumscribed ellipsoid. While this matrix representation is
useful for various reasons—elaborated upon in Section 4.2—the correspondence can be sim-
plified by means of working solely with the graph’s Laplacian matrix. This is the approach
recently taken by Devriendt and Van Mieghem [DVM18]. They simplify and summarize
Fiedler’s main results and focus mainly on one side of the correspondence—namely, given
G, they examine the properties of its associated simplices SG and S+

G . Devriendt and Van
Mieghem also make explicit the connection between a graph’s (combinatorial) simplex, SG,
and its inverse simplex, S+

G . While Fiedler was aware of the existence of SG—he later ex-
amines the properties of its circumscribed ellipsoid [Fie05]—the majority of his work on the
graph-simplex correspondence focuses on the inverse simplex, S+

G .

Due to Fiedler’s more general interest in the relationship between matrices and simplices,
the majority of his results pertaining to the graph-simplex correspondence are implicit conse-
quences thereof. His block matrix approach lends itself more readily to the study of volumes,
angles and circumscribed quadrics, which thus constitute the core of Fiedler’s results. De-
vriendt and Van Mieghem make many of these implicit results explicit, giving equations

2



Chap. 1. Introduction Prior Work

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Two examples of graphs ((a) and (d)) and their combinatorial and normalized
simplices. The combinatorial simplices are figures (b) and (e); the red (lighter) simplex is the
inverse combinatorial simplex. The normalized simplices are figures (c) and (f); the yellow
(lighter) simplex is the inverse normalized simplex. Observe that the upper graph on three
vertices gives rise to simplices in R2, while that on four vertices to simplices in R3. The
reader may notice that the inverse simplex seems to be smaller in volume—we will address
this relationship in Chapter 3.

which directly relate properties of the graph to those of the simplex.

Very recently, the graph-simplex correspondence has been applied in computer science to
the area of low dimensional graph embeddings. Such embeddings seek to realize the vertices
of a given graph as points in Euclidean space (ideally a space whose dimension is much lower
than the number of nodes of the graph) in such a way that particular graph properties are
preserved [CZC18]. Torres, Chan, and Eliassi-Rad examine projections of SG into a lower
dimensional space as possible graph embeddings. [TCER19]. They give empirical results
suggesting that this approach is highly effective for link prediction and graph reconstruction.

While this summarizes all the work done explicitly on the graph-simplex correspon-
dence, the more general topic of geometric graph theory has garnered attention from many
sources. There is a wide literature on graph embeddings and geometric graph visualizations
(e.g., [Tam13, BCD+07, KK89, FR91, DFPP90]), an area which typically seeks to represent
a graph (sometimes multiple graphs [EKLN05, ELM16, BKR12]) in the plane or R3 under
certain conditions. For example, we might seek an embedding in which the edges do not
cross (a “planar” embedding [Kan93, NR04]), or one in which the vertices are represented as
geometric objects [DH97].

Computer scientists have also leveraged graph theory to analyze data. Datum with k
features can naturally be viewed as points in k dimensional space—the “feature space”.
Laplacian Eigenmap methods [BN02] assume that the observed data lies on a lower dimen-
sional manifold within the feature space and seeks to develop useful representations of the
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data. A distinct approach involves trying to generate a lower dimensional representation of
the data given its graph structure (typically represented as an “affinity matrix”). This general
approach is usually referred to as spectral embedding [BH03, BDR+04], and admits different
instantiations, including Principal Component Analysis (PCA) [Jol11], Multi-dimensional
Scaling (MDS) [KW78, CC00], and Local Linear Embedding (LLE) [RS00]. Related work
seeks to apply techniques from topology to find structure in graphs, both from a purely theo-
retical viewpoint (e.g., topological graph theory [GT01]), and more recently with applications
to complex networks in mind [SCL18, WMRB15].

There has also been work on graphs arising from general polyhedra, e.g., Steinitz’s the-
orem [Ste22]. However, this work is not spectral in nature and therefore quite unrelated to
the graph-simplex correspondence.

§1.2. Contribution

We provide a self-contained treatise of the graph-simplex correspondence, including both
Fiedler’s main results on the topic as well those newly discovered results of Devriendt and
Van Mieghem [DVM18]. We also expand on these results in several ways, enumerated below.
For a preliminary taste of the correspondence, see the examples in Figure 1.1.

• Introduction of the dual simplex. Although at first seemingly unrelated to the cor-
respondence itself, we introduce an object called the “dual simplex” of a given simplex.
This object was remarked upon by Fiedler in his 2011 book [Fie11], but he did not
investigate it. Our treatment of the dual simplex is also mathematically distinct from
Fiedler’s. We present several general properties of the dual simplex (e.g., Lemmas 2.13,
2.14, 3.23, 2.12) and use it to frame the graph-simplex correspondence, especially as it
relates to the normalized Laplacian (see below).

• Extension of correspondence to the normalized Laplacian. While Fiedler (im-
plicitly) and Devriendt and Van Mieghem (explicitly) studied the correspondence by
means of the combinatorial Laplacian of a graph, we expand the correspondence to the
normalized Laplacian. This matrix also describes the complete structure of the graph
but is more intimately related to several of its features, such as random walk dynam-
ics [CG97]. We introduce this new mapping along with the original in Section 3.2. We
then study the properties of the simplex associated to the normalized Laplacian, which
we term the “normalized” simplex. Somewhat surprisingly, the normalized simplex is
a significantly different object than the combinatorial simplex. Its analysis also proves
more complicated because, as we will show, the inverse normalized simplex is not the
dual of the normalized simplex in general, whereas the combinatorial simplex and its
inverse are duals to one another. We refer the reader to Figure 1.2 for an illustration
of the relationship between a graph and its various simplices.

• New graph equations and inequalities. Combining Fiedler’s block matrix ap-
proach with that of Devriendt and Van Mieghem, we are able to uncover several new
relationships. We show, for example, that the entries of the Laplacian and the vertices
of SG are related to the volumes of the facets of S+

G (Lemma 4.6), give a general formula
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Figure 1.2: An illustration of the various objects and relationships in the graph-simplex
correspondence. The combinatorial simplices sit to the right of G, while the normalized
simplices sit to the left. Duality is marked by the superscript ∗. We see that SG and S+

G are
duals to one another but the normalized simplices are not.

for the volume of a simplex in terms of the eigenvalues of the Gram matrix of its dual
(Theorem 4.2), and a formula for Steiner ellipsoid of a simplex in terms of the ver-
tex matrix of its dual (Lemma 4.19). We also relate the eigenvalues of L̂G to the total
weight of spanning trees in G, and consequently to the eigenvalues of LG (Lemma 4.11).
These results are given in Section 4.2, 4.3, and 4.4. Figure 1.3 demonstrates how one
can utilize the correspondence to translate between the combinatorial properties of the
graph and the geometric properties of its simplices.

• Link between RG and S+
G . We uncover a link between the inverse combinatorial

simplex of a graph and a geometric object related to the effective resistance of the graph,
which we call the “resistive polytope” and denote RG. It seems that the existence of
this object has been previously acknowledged (e.g., [Gha15]), but never rigorously
studied. This material appears in Section 4.5.

• Algorithmic analysis of the correspondence. Perhaps most significantly, we ini-
tiate the study of the algorithmic foundations of the correspondence (Chapter 5). This
entails three distinct aspects.

1. Consequences for computational complexity. We explore several conse-
quences for computational complexity. Owing to the pervasiveness of graphs in
theory and application, the complexity class of many graph-theoretic problems are
well established (e.g., computing maximum-cuts and independent sets are “hard”,
while spanning trees are “easy”, etc.) If, via the correspondence, such problems
have analogues in the simplex then this has implications concerning the difficulty
of these geometric problems. Moreover, while the complexity of the analogous
geometric problems may already be known in general convex polytopes, under-
standing the complexity in simplices can yield an improved understanding of their
hardness threshold. We give several examples of such results in Section 5.2.

2. Lower bounds on computing the correspondence. We then explore the
natural question of whether various aspects of the correspondence can be computed
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Figure 1.3: A visualization of how the correspondence can be used to apply graph-theoretic
knowledge to the geometry of the simplices and vice versa. For example, leveraging that
the geometry of S+

G is intimately related to the effective resistances of G and relating the
equations of S+

G to those of SG via duality allows us to, say, express equations of spanning
trees in terms of effective resistances.

efficiently. For example, given G how quickly can we compute SG or S+
G? What

about computing SG given S+
G , or vice versa? Our results in this space are mostly

negative; transitioning between many of these objects require time no less than
that required to perform an eigendecomposition of a Laplacian matrix. This is
perhaps to be expected given that the mapping is based on such a decomposition,
but it is not immediate. It is a priori feasible that the various relationships between
the eigenvalues and eigenvectors which define the vertices of the simplices are
computable more quickly than the eigenvalues and eigenvectors themselves.

3. Approximations. Finally, we explore several approximations. Given that the
simplex of a graph with n vertices lives in Rn−1—a high dimensional space—we
might hope that we can “approximately” embed it in lower dimensions. We explore
this possibility in Section 5.4.1. We also demonstrate that rank k approximations
to the Laplacian give rise to convex polyhedra in Rk, and that these polyhedra
approximate the simplex SG in various ways (with the accuracy depending on the
size of the (k+ 1)-st largest eigenvalue of LG). We view these results as providing
theoretical justification for recent work of Torres et al. mentioned in the previous
section [TCER19].

We end this section by noting that while the dissertation is largely theoretical in nature,
code implementing various aspects of the graph-simplex correspondence was written by the
author and is publicly available. The figures throughout the manuscript were either generated
by this software (via python and Matplotlib), or by the drawing editor Ipe [Che14].

§1.3. Organization

The rest of the thesis will be organized as follows. Chapter 2 will present the relevant back-
ground material in the areas of linear algebra, spectral graph theory, and simplex geometry.
Here we will also define and make some preliminary explorations of the dual simplex. The
background material of Sections 2.1, 2.2, and 2.3.1 is quite standard; the reader familiar with
these subject areas should be able to skip them without too much trouble. We encourage all
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readers to peruse Section 2.5 because, for one, the field of simplex geometry is less well studied
in general than the others and secondly, as stated above, we provide a novel treatment of the
dual simplex. Chapters 3 and 4 then explore the mathematical aspects of the graph-simplex
correspondence, and Chapter 5 presents the algorithmic foundations. In order to conserve
space, we have moved those proofs which were presented by either Fiedler or Devriendt and
Van Mieghem to the appendix, in addition to those which are elementary and not directly
related to the material at hand (e.g., those pertaining to background material).
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Chapter 2

Background and Fundamentals

I have got my result, but I do not know yet how to
get it.

— Carl Friedrich Gauss

This chapter is devoted to introducing the pre-requisite knowledge necessary to grapple
with subsequent material. The subject matter of this dissertation lies at the intersection
of several mathematical topics, ensuring that any treatment of the material will give rise
to notational challenges. Nevertheless, we strive—courageously, in the author’s unbiased
opinion—to use standard notation wherever possible in the hopes that readers familiar with
linear algebra and spectral graph theory may skip this background material without losing
the plot. Omitted proofs can be found in Appendix A.1.

§2.1. General Notation

We use the standard notation for sets of numbers: R (reals), N (naturals), Z (integers). For

any n ∈ N, set [n]
def
= {1, 2, . . . , n}. The complement of a set U (with respect to what will be

clear from context) is denoted U c. We let Rn×m denote the set of n ×m matrices (n rows
and m columns) with entries in R. Matrices will typically be denoted by uppercase letters
in boldface, e.g., Q ∈ Rn×m. Matrices may also be referred to as linear transformations and
written, for example, as Q : Rm → Rn. We let Q(i, ·) (resp., Q(·, i)) denote the i-th row
(resp., column) of the matrix Q. Similarly, for sets B1, B2, we let Q(B1, B2) be the submatrix
of Q indexed by the rows B1 and columns B2. We take Q−i,−j to mean Q({i}c, {j}c).

We work with Rn as a vector space. Vectors will typically be denoted by lowercase
boldcase letters. It will often be intuitively useful to identify vectors with their endpoints,
rather than the traditional “arrow” originating from the origin. When this is the case, we
will often use the word point instead of vector. We emphasize that they are formally the
same object.

The standard inner product on Rd is denoted as 〈·, ·〉, that is, 〈x,y〉 =
∑

i x(i)y(i).
Elementary properties of the inner product will often be used without justification, such as
its bilinearity: 〈x, αy1 + y2〉 = α〈x,y1〉 + 〈x,y2〉 for α ∈ R. For n ∈ N, let 0n ∈ Rn and
1n ∈ Rn be the vectors of all zeroes and all ones. Let In and Jn refer to the n × n identity
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matrix and all-ones matrix respectively (so Jn = 1n1
t
n). When the dimension n is understood

from context, will typically omit it as a subscript. We use χ(E) or χE as the indicator of an
event E, i.e., χ(E) = 1 if E occurs, and 0 otherwise. For example, χ(i ∈ U) = 1 if i ∈ U ,
and 0 if i ∈ U c. Similarly, for U ⊆ K, χU ∈ RK is the indicator vector of the set U , so
χU (i) = χ(i ∈ U). We also set χi = χ{i}.

By diag(y1, y2, . . . , yn) we mean the n × n matrix Q entries Q(i, i) = yi and Q(i, j) = 0
for i 6= j. Given vectors x1, . . . ,xn, we will often denote by (x1, . . . ,xn) or simply (xi) the
matrix whose i-th column is xi. The Gram matrix of a set of vectors x1, . . . ,xn is the matrix
with (i, j)-th entry 〈xi,xj〉. The i-th coordinate of a vector x will be denoted either by x(i)
or simply x(i). We also set x1/2 =

√
x = (

√
x(1), . . . ,

√
x(n)).

For 1 ≤ p <∞, the p-norm of x ∈ Rd is ‖x‖p =

(∑d
i=1 x

p
i

)1/p

, while the 0-norm of x is

the number of non-zero entries of x, and is denoted by ‖x‖0. Given a vector or matrix, we
use the superscript t to denote it’s transpose, i.e., given Q, Qt is defined as Qt(i, j) = Q(j, i).
We will sometimes use the notation ⊥ to mean “orthogonal to”, so x ⊥ y iff 〈x,y〉 = 0.
We will often use the shorthand “iff” to mean “if and only if”. We use δij to denote the
Kronecker delta function, i.e., δij = 1 if i = j and 0 otherwise. We may sometimes include a
comma and write δi,j .

A set X ⊆ Rm is convex if for all x,y ∈ X and λ ∈ (0, 1), λx+ (1−λ)y ∈ X . The convex
hull of a finite set of points X = {x1, . . . ,xk} ⊆ Rn is

conv(X )
def
=

{∑
`

αixi :
∑
`

αi = 1, αi ≥ 0

}
, (2.1)

or equivalently, the smallest convex set containing X [GKPS67]. We will often denote the
squared distance matrix of X by D(X ) ∈ R|X |×|X |, whose entries are given by D(x,y) =
‖x− y‖22.

§2.2. Linear Algebra

We assume familiarity with the basic linear algebraic notions—determinants, dimension,
span, etc. We use the standard notation for these—det, dim, span, etc. All relevant back-
ground material can be found in a standard reference, e.g. [Axl97]. We begin by stating a
well-known but substantial result first proved by Cauchy (see [Haw75] for the relevant his-
tory), which initiated the systematic study of the spectrum of matrices and which underpins
the results in this dissertation.

Theorem 2.1 (Spectral Theorem for real matrices). Every real, symmetric n×n matrix has
a set of n orthogonal eigenvectors and real eigenvalues.

Next we state a result which will underpin our construction of the “dual simplex” in
Section 2.5.1.

Lemma 2.1 ([Fie11]). Let v1, . . . ,vk be a set of linearly independent vectors in Rn. There
exists a second set of linearly independent vectors u1, . . . ,uk such that 〈vi,uj〉 = δij for all
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i, j ∈ [k]. The collections {vi} and {ui} are called any of biorthogonal, dual or sister sets
(or bases if k = n).

We present a simple observation to do with dual bases which will be useful in later sections.
As usual, the reader can find the proof in Appendix A.1.

Observation 2.1. Let {v1, . . . ,vn} ⊆ Rn be a set of linearly independent vectors. The sister
basis given by Lemma 2.1 is unique. Moreover, if we let M ∈ Rn×n have as columns the
vectors vi, and Q have as columns the vectors of the sister basis, then Qt = M−1.

Let M ∈ Rn×n. We recall that a vector ϕ satisfying Mϕ = λϕ is an eigenvector (or
eigenfunction) of M , and call λ the associated eigenvalue. If M is real and symmetric, then
the spectral theorem dictates that there exists an orthonormal basis consisting of eigenvectors
{ϕ1,ϕ2, . . . ,ϕn} of M whose corresponding eigenvalues {λ1, . . . , λn} are all real. Let Φ =
(ϕ1,ϕ2, . . . ,ϕn) be the matrix whose i-th column is the i-th eigenvector of M , and set
Λ = diag(λ1, . . . , λn). Observe that

MΦ = M(ϕ1, . . . ,ϕn) = (Mϕ1, . . . ,Mϕn) = (λ1ϕ1, . . . , λnϕn) = ΦΛ. (2.2)

Moreover, if {ϕi}i are assumed to be orthonormal then ΦtΦ = I from which it follows from
(2.2) that

M = ΦΛΦt =
∑
i∈[n]

λiϕiϕ
t
i, (2.3)

which is called the eigendecomposition of M . If M obeys xtMx ≥ 0 for all x ∈ Rn, then
we call M positive semidefinite (PSD). Importantly, if M is PSD, then its eigenvalues are
non-negative. Indeed, with the eigendecomposition of M as above,

0 ≤ ϕtkMϕk =
∑
i∈[n]

λiϕ
t
kϕiϕ

t
iϕk = λkϕ

t
kϕkϕ

t
kϕk = λk,

for any k since {ϕi} are orthonormal. Thus, if M is PSD we define

M1/2 def
= ΦΛ1/2Φt =

∑
i∈[n]

√
λiϕiϕ

t
i.

It’s easily verified that (M1/2)2 = M . The following basic result will be useful.

Lemma 2.2. For any M : Rn → Rm, rank(M) = rank(M tM).

We conclude with a formula for the determinant of a minor of an invertible matrix. It
is often referred to as (a special case of) Sylvester’s identity [Syl]. We state the version
described by Viktor Prasolov [Pra94].

Lemma 2.3. Let Q ∈ Rn×n have a non-zero determinant, and let ∅ 6= U ( [n]. Then

det
(
Q−1[U,U ]

)
det(Q) = ±det(Q[U c, U c]). (2.4)
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2.2.1. Pseudoinverse

If M is a singular matrix (has no inverse), a natural question to ask is whether there exists a
matrix whose relationship to M “approximates”, in some relevant sense, the relationship be-
tween a matrix and its inverse. This question was asked and answered, on separate occasions,
by both Elikam Moore and Sir Roger Penrose. Both discovered—originally Moore in 1921
and later Penrose in the 1950’s—what is now known as the Moore-Penrose pseudoinverse of
a matrix [Moo20, Pen55, Pen56]. It is defined as follows.

Definition 2.1 (Moore-Penrose pseudoinverse [BH12]). Let M ∈ Rn×m for some n,m ∈ N.
If M+ ∈ Rm×n is such that

(i). MM+M = M and M+MM+ = M+;

(ii). MM+ and M+M are hermitian, i.e., MM+ = (MM+)t, M+M = (M+M)t,

we call M+ the Moore-Penrose Pseudoinverse of M .

We will often drop the identifier “Moore-Penrose” and simply write that M+ is the
pseudoinverse of M . It’s not immediate from the definition, but the pseudoinverse of M has
several desirable properties: When M is real, so is M+; (M+)+ = M ; (M+M)t = M+M .
Importantly, when M is invertible, then M+ = M−1. Moreover, the pseudoinverse always
exists:

Lemma 2.4 ([BH12]). Let M ∈ Rn×m. The pseudoinverse M+ of M exists and is unique.
Moreover, the following properties hold:

(i). MM+ is an orthogonal projector obeying range(MM+) = range(M); and

(ii). M+M is an orthogonal projector obeying range(M+M) = range(M+).

Together, Definition 2.1 and Lemma 2.4 do not necessarily yield a way to obtain the
pseudoinverse of a matrix M . We next demonstrate that when the eigendecomposition is
known, we can give a precise expression for the pseudoinverse.

Lemma 2.5. Suppose M ∈ Rm×m admits the eigendecomposition M =
∑k

i=1 λiϕiϕ
t
i, where

λi, 1 ≤ i ≤ k are the non-zero eigenvalues of M with corresponding orthornomal eigenvectors
ϕ1, . . . ,ϕk. Then the pseudoinverse of M is

M+ =
k∑
i=1

1

λi
ϕiϕ

t
i. (2.5)

§2.3. Spectral Graph Theory

Similarly to Section 2.2, the results in this section can be found in any self-contained reference
on (spectral) graph theory (see e.g., [Spi09, CG97]).
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We begin with basic graph theory. We denote a graph by a triple G = (V,E,wG) where
V is the vertex set, E ⊆ V × V is the edge set and wG : V × V → R≥0 (the non-negative
reals) a weight function. We will always drop the subscript on wG unless we are dealing with
multiple graphs. We let the domain of w = wG be V × V for convenience; for (i, j) /∈ E we
have w(i, j) = 0. We call G unweighted if w(i, j) = χ(i,j)∈E for all i, j. In this case, we may
omit the weight function and simply write G = (V,E). We typically denote by w the vector
(w(1), . . . , w(n)) of weights. Throughout this manuscript, G will always be undirected (edges
do not have directions), connected (each vertex is reachable from every other vertex), and
simple (w(i, i) = 0 for all i). We will usually take V = [n] for simplicity. For a vertex i ∈ V ,
we denote the set of its neighbours by

∂G(i)
def
= {j ∈ V : w(i, j) > 0}, (2.6)

a set we call the neighbourhood of i. The degree of i is deg(i)
def
= |∂(i)|. The weight of i is

w(i)
def
=
∑

j∈∂(i)w(i, j). Note that if G is unweighted, then w(i) = deg(i). If the degree of
each vertex in G is equal to k, we call G a k-regular graph. For G unweighted, we call it
regular if it is k-regular for some k. If G is weighted, then we say it is regular if each vertex
has the same weight, i.e., w(i) = w(j) for all i, j. If U ⊆ V contains only vertices with the
same degree (resp., weight), we call it degree (resp., weight) homogeneous. For a subset of
vertices U , the volume of U is

volG(U)
def
=
∑
i∈U

w(i), (2.7)

and the volume of G is vol(G)
def
= volG(V (G)). As usual, we will drop the subscript if the

graph is clear from context. Owing to possible mental lapses and above average caffeine
intake, we may sometimes abuse notation and extend the weight function w to sets of edges
or vertices by setting w(A) =

∑
a∈Aw(a). Thus, for instance, w(U) = vol(U), for U ⊆ V .

(The more notation the better, right?)

Given a subset U ⊆ V , we write G[U ] to be the graph induced by U , i.e., V (G[U ]) = V ∩U
and E(G[U ]) = E ∩ U × U . If a graph is connected and acyclic (i.e., there is a unique path
between each pair of vertices) we call it a tree. It’s well known that a tree on n nodes has
n− 1 edges.

As mentioned above, we will always work with undirected graphs. In this case, we identify
each tuple (i, j) with its sister pair (j, i). This implies, for example, that when summing over
all edges (i, j) ∈ E we are not summing over all vertices and their neighbours. Indeed, this
latter summation double counts the edges:

∑
(i,j)∈E = 1

2

∑
i

∑
j∈∂(i). We will often write

i ∼ j to denote an edge (i, j); so, for example,
∑

i∼j =
∑

(i,j)∈E .

We will also appeal to the so-called “handshaking lemma” for unweighted graphs, which
states that

∑
i degG(i) = 2|E(G)|; easily verified with a counting argument.

2.3.1. Laplacian Matrices

Here we introduce various matrices associated to graphs, including the combinatorial and
normalized Laplacians. See the survey by Merris [Mer94] for an excellent overview of the
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combinatorial Laplacian, and that by Mohar [MACO91] for an overview of its spectrum.

Let G = (V,E,w) be a graph, with V = [n] and |E| = m. Let WG be the weight ma-
trix of G, i.e., WG = diag(w(1), w(2), . . . , w(n)). The degree matrix of G is the diagonal
matrix diag(deg(1),deg(2), . . . ,deg(n)). The adjacency matrix of G encodes the edge rela-
tions, namely, AG(i, j) = w(i, j) for all i 6= j, and AG(i, i) = 0 for all i. Notice that AG is
symmetric and that if G is unweighted, then WG and the degree matrix are equivalent. The
combinatorial Laplacian of G is the matrix

LG
def
= WG −AG. (2.8)

There are several useful representations of the Laplacian. Let Li,j = w(i, j)(χi − χj)(χi −
χj)

t ∈ RV×V , i.e.,

Li,j(a, b) =


w(i, j) a = b ∈ {i, j},
−w(i, j), (a, b) = (i, j),

0, otherwise.

Then
LG =

∑
i∼j
Li,j . (2.9)

We associate with LG the quadratic form LG : RV → R which acts on functions f : V → R
as f

LG7−−→ f tLGf . The Laplacian quadratic form will be crucial in our study of the geometry
of graphs. Luckily, its action on a vector is captured by an elegant closed-form formula.
Computing Li,jf = w(i, j)(χi−χj)(χi−χj)tf = w(i, j)(f(i)−f(j))(χi−χj), we find that
f tLi,jf = w(i, j)(f(i)− f(j))2. Therefore, applying Equation (2.9) yields

LG(f) = f t
(∑
i∼j
Li,j

)
f =

∑
i∼j
f tLi,jf =

∑
i∼j

w(i, j)(f(i)− f(j))2. (2.10)

A second Laplacian matrix associated with G is the normalized Laplacian, given by

L̂G = W
−1/2
G LGW

−1/2
G = I−W−1/2

G AGW
−1/2
G . (2.11)

The normalized Laplacian is intimately related to various phenomena, most notable random
walks on the graph [CZ07, CG97]. To investigate L̂G we may carry out a similar procedure

to above. In particular, if we define L̂i,j = W
−1/2
G Li,jW

−1/2
G then we obtain the equivalent

of Equation (2.9) for the normalized Laplacian:

L̂G =
∑
i∼j
L̂i,j . (2.12)

As we’ve done here, we will typically emphasize the associate of elements associated to the
normalized Laplacian with a hat. Using Equation (2.12), we see that the quadratic form L̂G
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associated with L̂G acts as

L̂G(f) =
∑
i∼j

w(i, j)

(
f(i)√
w(i)

− f(j)√
w(j)

)2

. (2.13)

We now discuss the spectrum of LG and L̂G. Both the combinatorial and normalized
Laplacian of an undirected graph G are real, symmetric matrices. By the spectral theo-
rem therefore, they both admit a basis of orthonormal eigenfunctions corresponding to real
eigenvalues.

Lemma 2.6. Let G = ([n], E) be a connected graph. Then kerLG = span(1) and ker L̂G =
span(

√
w), where

√
w = (

√
w(1), . . . ,

√
w(n)). Moreover, both LG and L̂G have a single zero

eigenvalue (with corresponding eigenvector 1 and
√
w, respectively); all other eigenvalues are

strictly positive.

We end this section by discussing two properties of graph Laplacians. The first is their
pseudoinverse relationships, and the second is the remarkable link between the eigenvalues
of the combinatorial Laplacian and spanning trees of the graph.

Pseudoinverse of LG and L̂G. Since LG and L̂G are both symmetric, range(Lt) =

range(LG) = Rn \ ker(LG) = Rn \ span({1}), and range(L̂
t

G) = range(L̂G) = Rn \ ker(L̂G) =
Rn \ span({

√
w}). It follows by Lemma 2.4 that the product of LG and L+

G is the projection

LGL
+
G = L+

GLG = I− 1

n
11t, (2.14)

i.e., onto span(1)⊥ (the orthogonal complement of span(1)). The product of L̂G and L̂
+

G

meanwhile, is

L̂GL̂
+

G = L̂
+

GL̂G = I− 1

vol(G)
W

1/2
G 1(W

1/2
G 1)t = I− 1

vol(G)

√
w
√
w
t
, (2.15)

the projection onto span(w)⊥. Note that the denominator in (2.15) is vol(G) instead of n to
ensure the result is a projection matrix.1

Kirchoff’s Theorem. A spanning tree of a graph G is a connected subgraph T of G with
V (T ) = V (G) and |E(T )| = |V (T )| − 1. That is, T contains the minimum number of edges
possible to connect all vertices of G. We will make use of the following Theorem, often called
the Kirchhoff tree theorem or the matrix tree theorem, named after Gustav Kirchhoff for the
work done in [Kir47]. It was first stated in its most familiar form by Maxwell [Max73]. We
use the formulation found in [CK78].

1Indeed, put P = I− 1
vol(G)

√
w
√
w
t
. Then P2 = I− 2

vol(G)

√
w
√
w
t

+ 1
vol(G)2

√
w
√
w
t√

w
√
w
t

= P, since
√
w
t√

w = vol(G).
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Chap. 2. Background and Fundamentals Electrical Flows

Theorem 2.2. Let G = (V,E,w) be a connected, undirected graph. Let L be G’s combina-
torial Laplacian matrix. Then for all i, j ∈ [n],

ΓG = (−1)i(−1)j det(L−i,−j) =
1

n

n−1∏
i=1

λi,

where λ1, . . . , λn−1 are the non-zero eigenvalues of G, L−i,−j is the matrix obtained by re-
moving the i-th row and j-th column of LG, and ΓG is the weight of all spanning trees of
G.

Remark 2.1. The T be the set of all spanning trees of a graph G. By the “weight of all
spanning trees”, we mean that

ΓG =
∑
T∈T

∏
i∈V (T )

wG(i). (2.16)

Thus, for G unweighted,
∏
i∈V (T )wG(i) = 1 so ΓG simply counts the number of spanning

trees.

§2.4. Electrical Flows

One of the most successful physical interpretations of a graph arises from considering it as an
electrical network [Ell11, Tet91]. We imagine placing a resistor of resistance 1/w(i, j) on each
edge (i, j) ∈ E(G). Injecting current at one or more of the vertices results in an electrical
flow in the graph. While this physical interpretation is intuitively useful, it is not necessary
for understanding the notion of electrical flows. Consequently, we move a more involved
discussion on electrical flows to Appendix B and present only the required definitions and
results here. The key concept is that of the “effective resistance” between two vertices:

Definition 2.2. The effective resistance between nodes i and j is reff(i, j)
def
= L+

G(χi − χj),
and the effective resistance matrix of G is the matrix RG with entries RG(i, j) = reff(i, j).

The total effective resistance in the graph is the quantity Rtot
G

def
= 1

21tRG1.

We can relate the entries of the pseudoinverse Laplacian with the effective resistance as
follows.

Lemma 2.7. For any graph G, RG = 1∆t+∆1t−2L+
G where ∆ = diag(L+

G(i, i)). Moreover,
for all i, j (including i = j),

L+
G(i, j) =

1

2n

( ∑
k∈[n]

reff(i, k) + reff(j, k)

)
− 1

2
reff(i, j)−

Rtot
G

n2
. (2.17)

Later, we will demonstrate that the inverse combinatorial simplex of a graph G is inti-
mately related to the effective resistance. The following block matrix equation will help us
generate statements concerning the geometry of this simplex, and eventually, all simplices.

15



Chap. 2. Background and Fundamentals Simplices

The following equation was first given in the following form by Van Mieghem et al. [VMDC17]
and follows from a more general version proven by Fiedler [Fie93, Fie11].

Lemma 2.8. For a weighted graph G, let ∆ = diag(L+
G(i, i)) be the vector containing the

diagonal elements of L+
G. Then,

− 1

2

(
0 1tn
1n RG

)
=

(
∆tLG∆ + 4

n2R
tot
G −(LG∆ + 2

n1)t

−(LG∆ + 2
n1) LG

)−1

. (2.18)

Moreover, LGRGLG = −2LG and for all x ∈ span(1)⊥, RGLGRGx = −2RGx.

The proofs of Lemmas 2.7 and 2.8 are, as usual, found in Appendix A.1.

§2.5. Simplices

Finally we reach what is our main object of study. We begin by describing a relationship
among a set of vertices which, roughly speaking, generalizes the notion of “non-collinearity”
to higher dimensions. We are then able to properly define a simplex and its dual. We end
the section by briefly discussing several of the angles in a simplex.

Affine Independence. In order to properly define simplices, we need to define the notion
of “affine independence” between points. In R2, for example, such a relationship characterizes
those sets of three points which describe a triangle. See Figure 2.1b for an illustration of
affine dependence and independence.

Definition 2.3. A set of points x1, . . . ,xk are said to be affinely independent if the only
solution to

∑
i∈[n] αixi = 0 with

∑
i∈[n] αi = 0 is α1 = · · · = αn = 0.

Perhaps a more useful characterization of affine independence is the following.

Lemma 2.9. The set {x1, . . . ,xk} is affinely independent iff for each j, {xj−xi}i 6=j is linearly
independent.

The following lemma demonstrates that if we form a matrix of size (n − 1) × n whose
columns are n affinely independent vectors, then this matrix has full rank. Moreover, we
may assume that the linear combination of the vectors which generate any point in the image
space is in fact an affine combination, in the following sense.

Lemma 2.10. Let {x1, . . . ,xn} ⊆ Rn−1 be affinely independent, and let y ∈ Rn−1 be arbitrary.
Then there exists coefficients {αi} ⊆ R obeying

∑
i∈[n] αi = 1 such that y =

∑
i∈[n] αixi.

The simplex. We jump straight into the definition; see Figure 2.1a for several examples.

Definition 2.4. A simplex T in Rn−1 is the convex hull of n affinely independent vectors
σ1, . . . ,σn. That is, T = conv(γ1, . . . ,γn).
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Chap. 2. Background and Fundamentals Simplices

(a) (b)

Figure 2.1: (a) Simplices in dimensions one, two, and three. (b) Example of affine dependence
and independence. Here x1, x2, x3 are not affinely independent, as evidenced by the fact that
x2 − x1 and x2 − x3 are parallel. y1, y2, y3 on the other hand, are affinely independent; one
can easily visualize the triangle formed by their convex hull. We emphasize that the arrows
representing the difference between two vectors, e.g., x2 − x1, represent their direction only
and not their absolute position.

If we gather the vertices of the simplex T into the vertex matrix Σ = (γ1, . . . ,γn) whose
columns are the vertex vectors of T , then we can write the simplex as

T = {Σx : x ≥ 0, ‖x‖1 = 1}.

Given a point p = Σx ∈ S, x is called the barycentric coordinate of p.

As is illustrated in two and three dimensions by the triangle and the tetrahedron, the
projection of the simplex onto spaces spanned by subsets of its vertices yields simplices of
lower dimensions. Let U ⊆ [n]. The face of T corresponding to U is

T �U
def
= {Σx : x ≥ 0, ‖x‖1 = 1, x(i) = 0 for all i ∈ U c}. (2.19)

If |U | = n− 1, we call T �U a facet. Figure 2.2b illustrates a two-dimensional facet and one-
dimensional face of a simplex in R3. If x is the barycentric coordinate for a point p ∈ T �U ,
we may write xU to emphasize that x(U c) = 0. The following observation demonstrates that
T �U is a well-defined simplex.

Observation 2.2. Any subset of an affinely independent set of vectors is again affinely
independent.

Depending on the situation we may adopt different notation for the faces of a simplex.
Oftentimes the vertical restriction symbol will be dropped and we will write only SU ; other
times we will write S[U ], especially when the space reserved a subscript is being used for
other purposes.

In our study of simplices we will be mainly concerned with their relative properties (e.g.,
volume, angles, shape, etc.) as opposed to their absolute positions in space. Thus, it will often
be convenient to identify simplices which share the same relative properties, but are simply
rotated and/or translated versions of one another. We will call such simplices congruent.
Unfortunately for notational simplicity’s sake, it will be required to sometimes differentiate
between simplices which are congruent by translation only, and simplices which are congruent
by translation and rotation. Let us call the former type of congruence translational congru-
ence, and the latter rotational congruence. We use the symbol ∼= to denote translational
congruency between simplices; so T1

∼= T2 iff Σ(S1) = Σ(S2) + α1t for some α ∈ Rn−1. We
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(a) (b)

Figure 2.2: (a) The directions of altitudes in a simplex. We emphasize that the arrows do not
represent the actual altitudes themselves, which are vectors and hence originate at the origin.
(b) One and two-dimensional faces (T{2,3} and T{1,2,4}, respectively) of a three dimensional
simplex.

will also occasionally make use of the following translational congruence class of simplices:

[T ]
def
= {T ′ : T ′ ∼= T }. (2.20)

We will not require such notation for rotational congruence.

Two brief notes now on nomenclature. First, we will typically use the symbol T to denote
an arbitrary simplex. Later, we will use the symbol S to denote the simplex associated to a
graph. In this way we hope to provide a clear separation between those statements which hold
for general simplices and those which hold for simplices of a graph. Secondly, due possibly to
lack of sleep and apparent lack of conscientiousness, we may write the vertex matrix Σ of a
simplex T as (γ1, . . . ,γn), (γi), or {γi} as the case may be. Of course, they should be taken
to mean the same thing.

Centroids and altitudes. Two fundamental objects related to a simplex are its centroids
and altitudes (Figure 2.2). The centroid of a simplex is the point

c(T )
def
=

1

n
Σ1 =

1

n

∑
i∈[n]

γi. (2.21)

The centroid of a simplex can be thought of as its centre of mass, assuming that weight
is distributed evenly across its surface. We can also of course discuss the centroid of a face
TU , which is c(TU ) = |U |−1ΣχU . The altitude between faces TU and TUc is a vector which
lies in the orthogonal complement of both SU and SUc and points from one face to the other.
We denote the altitude pointing from SUc to SU as a(TU ). We can write the altitude as
a(TU ) = p − q for some p ∈ SUc and q ∈ SU , and thus as Σ(xUc − xU ) where xUc and xU
are the barycentric coordinates of p and q.

Nota Bene: While we conceptualize of the altitude a(TU ) as pointing from TU to TUc ,
we remark that since we are working in Rn−1 as a vector space, a(TU ) still “begins” at the
origin.

18
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Figure 2.3: An example of a simplex T ⊆ R2 (in black) and its dual, T ∗ (in gray). The blue
lines serve to emphasize the fact that the dual vertex γ∗1 is orthogonal to the face T2,3 just
as γ3 is to T ∗1,2.

Centred simplex. In later sections it will be convenient to work with a translated copy
of a given simplex which is centred at the origin. Accordingly, given any simplex T with
vertices {σi}, we let T0 denote the simplex with vertices {σi − c(T )}. Note that T0 ∈ [T ].
It’s clear that the centroid of T0 is the origin:

c(T0) =
1

n
(σ1 − c(T ), . . . σn − c(T ))1

=
1

n
(σ1 . . . σn)1− 1

n
(c(T ) . . . c(T ))1 = c(T )− c(T ) = 0.

We solidify the concept with a definition.

Definition 2.5. Given a simplex T , the unique (up to rotation and translation) simplex
with vertex matrix Σ(T )− (c(T ) . . . c(T )) centred at the origin is called the canonical (or
centred) simplex corresponding to T and is denoted T0.

We may also refer to T0 as the centred version of T in order spare the author the agony
induced by writing out the complete sentence “corresponding to the simplex T ”.

2.5.1. Dual Simplex

Here we introduce the notion of the dual simplex of a given simplex. The inspiration
for the construction comes from Fiedler’s treatment of what he calls the “Gramian of a
Graph” [Fie93]. The proofs in this section are relatively elementary. As such, most of them
have been moved to Appendix A.1.

Let Σ = (γ1, . . . ,γn) ∈ Rn−1×n be the vertex matrix of a simplex T ⊆ Rn−1. For each
i ∈ [n − 1], put vi = γn − γi. Then {v1, . . . ,vn−1} is a linearly independent set, and thus
admits a sister basis {γ∗1, . . . ,γ∗n−1} which together form biorthogonal bases of Rn−1 (Lemma

2.1). Put γ∗n = −
∑n−1

i=1 γ
∗
i .

Claim 2.1. The set {γ∗1, . . . ,γ∗n} is affinely independent.
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Therefore, the set {γ∗1, . . . ,γ∗n} determines a simplex, which we call the dual simplex of
T . Of course, it would highly suboptimal if the notion of a dual simplex depended on the
labelling of the vertices of T . More specifically, we defined the vertices of the dual simplex
γ∗i with respect to the vectors {γi − γn}. It is not clear a priori whether the vertices of the
dual simplex would change were we to relabel the indices of {γi}. In fact, they do not—the
demonstration of which is the purpose of the following lemma.

Lemma 2.11. Let {γ1, . . . ,γn} be a set of affinely independent vectors. Fix k ∈ [n − 1] and
define vi = γi − γn for i ∈ [n − 1] and ui = γi − γk for i ∈ [n] \ {k}. If {γ∗1, . . . ,γ∗n−1} is

the sister basis to {v1, . . . ,vn−1} and γ∗n = −
∑n−1

i=1 γi, then {γ∗1, . . . ,γ∗k−1,γ
∗
k+1, . . . ,γ

∗
n} is

the sister basis to {u1, . . . ,uk−1,uk+1, . . . ,un}.

We also observe that, using the same notation as above,

−
n∑

i=1,i 6=k
γ∗i = −

( n−1∑
i=1,i 6=k

γ∗i

)
− γ∗n = −

n−1∑
i=1,i 6=k

γ∗i +
n−1∑
j=1

γ∗j = γ∗k,

hence had we set vi = γk−γi and defined γ∗k = −
∑

i 6=k γ
∗
i (as we did for k = n), Lemma 2.11

demonstrates that we would produce the same set of vectors for the dual simplex. What a
relief! We honour the fact that the dual simplex is independent of labelling with the following
definition.

Definition 2.6 (Dual Simplex). Given a simplex T1 ⊆ Rn−1 with vertex set Σ(T1) =
(γ1, . . . ,γn), a simplex T2 ⊆ Rn−1 with vertex vectors Σ(T2) = (γ∗1, . . . ,γ

∗
n) is called the

dual simplex of T1 if for all k ∈ [n], {γ∗i }i 6=k is the sister basis to {γi − γk}i 6=k. We denote
the dual of the simplex T as T ∗.

We emphasize that the dual simplex is unique due to Observation 2.1.

Figure 2.3 illustrates a simplex and its dual. We remark that in light of the previous
lemma, in order to determine whether the vertices {γ∗i } are the dual vertices to {γi} it
suffices to check whether 〈γ∗i ,γj − γk〉 = δij for a single k 6= i, j, as opposed to all k ∈ [n].
This will be done henceforth and will not be further remarked upon.

We also note that duality between simplices is not a relationship between individual
simplices per se, but rather assigns to each congruence class [T ] a centred simplex. Indeed,
let T1 ∈ [T ] and let Σ(T ∗) = (γ∗1, . . . ,γ

∗
n). We claim that the vertices Σ(T ∗) are also dual to

Σ(T1) = (σ1, . . . ,σn). As usual, let Σ(T ) = (γi). Let α ∈ Rn−1 be such that σi = γi + α
(such an α exists by definition of [T ]). Then,

〈γ∗i ,σj − σn〉 = 〈γ∗i , (γj +α)− (γn +α)〉 = 〈γ∗i ,γj − γn〉 = δij ,

meaning that T ∗ is also dual to T1. We encapsulate this in an observation for easy recollection.

Observation 2.3. A simplex T and corresponding centred simplex T0 share the same dual,
i.e., T ∗ = T ∗0 .

We can also characterize the pairwise interaction between the vertices of T and T ∗.
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Lemma 2.12. Let T ⊆ Rn−1 be centred and have vertices {σi}. Then 〈γi,γ∗j 〉 = δij − 1/n
for all i, j ∈ [n], where {γ∗i } are the dual vertices.

Proof. By definition, we have 〈γ∗i ,γj − γk〉 = δij for any k and all i, j 6= k. Fix such an i, j
and k. Using that T is centred,

〈γ∗i ,γk〉 = −
∑
6̀=k
〈γ∗i ,γ`〉 = −

∑
` 6=k

(δi` + 〈γ∗i ,γk〉) = −1− (n− 1)〈γ∗i ,γk〉.

Rearranging demonstrates that 〈γ∗i ,γn〉 = −1/n, implying that 〈γ∗i ,γj〉 = δij + 〈γ∗i ,γk〉 =
δij − 1/n. �

Observe that the dual simplex is always centred by construction (since γ∗n = −
∑

i<n γ
∗
i ).

The following lemma demonstrates that, in the language of the preceding paragraph, if T ∗ is
the dual of the congruence class [T ], then the dual of [T ∗] is the representative of [T ] which
is centred.

Lemma 2.13. Let the simplex T ⊆ Rn−1 be centred. Then T = (T ∗)∗.

Proof. As usual, let {γi} be the vertices of T and {γ∗i } those of T ∗. Let {σi} be the vertices
of (T ∗)∗. We claim that, after possibly re-indexing, σi = γi for all i ∈ [n]. By definition, the
vertices {σi}n−1

i=1 are dual to {γ∗i −γ∗n}. Since the dual set is unique, to show that σi = γi for
i ∈ [n − 1], it suffices to show that {γi} obey this relationship. But by the previous lemma
this follows readily:

〈γi,γ∗j − γ∗n〉 = 〈γi,γ∗j 〉 − 〈γi,γ∗n〉 = δij −
1

n
− δin +

1

n
= δij .

For i = n moreover, we have σn = −
∑

`<n σ` = −
∑

`<n γi = γn since T is centred. �

Remark 2.2. The notion of the dual simplex expounded here is the same as the object
discovered by Fiedler in his book [Fie11, Chapter 5], which he calls the inverse simplex.
In a covert attempt to confuse the reader, we will reserve the name inverse simplex for a
(sometimes) distinct object. Fiedler defines the inverse simplex with respect to the centroid
of the given simplex, finding vectors ui such that 〈ui,γj − c〉 = δij − 1/n, where c = c(S).
Such vectors then satisfy 〈ui,σj − γk〉 = 〈ui,γj − c− (γk − c)〉 = δij − δik = δij for i, j 6= k,
hence are the (unique) dual vertices.

We summarize the discussion with the following theorem.

Theorem 2.3. Each simplex has a unique dual simplex. Moreover, if T ∗ is the dual of T ,
then T0 is the dual of T ∗, where T0

∼= T is centred.

Proof. Existence follows from Lemma 2.1 using the construction above. Uniqueness follows
from Observation 2.1 and Lemma 2.11. The second part of the statement follows from Lemma
2.13. �
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Figure 2.4: The angles in a simplex and its dual. The angle φ∗ij between γ∗i and γ∗j is the
same as that between −γ∗i and −γ∗j . From here we see that θij + φ∗ij = π.

We end this section on dual simplices by giving a necessary condition of the relationship
between a simplex and its dual. The following lemma also illustrates that the vertices γ∗i
are the “outer-normals” of T (γ∗i is perpendicular to the face T{i}c) and likewise, γi are the
outer-normals of T ∗.

Lemma 2.14. Let T ∗ be the dual of the simplex T ⊆ Rn−1. For all U ⊆ [n], ∅ 6= U 6= [n], TU
is orthogonal to T ∗Uc.

2.5.2. Angles in a Simplex

There are several angles worth discussing in a simplex. For a simplex T , let φ∗ij(T ) be the
angle between the outer normals to T{i}c and T{j}c . As usual, the paranthetical (T ) will
typically be dropped when the simplex is understood from context. Using the notion of the
dual simplex introduced in the previous section, we can write

cosφ∗ij(T ) =
〈γ∗i ,γ∗j 〉

‖γ∗i ‖2 ·
∥∥∥γ∗j∥∥∥

2

,

where {γ∗i } are the vertices of T ∗. The superscript represents the fact that the angle is
between the vertices of the dual simplex. Now, define θij(T ) to be the angle between T{i}c and
T{j}c . Appealing to elementary geometry, we see that the angles φ∗ij and θij are supplementary,
i.e., their sum is π. Hence,

cos θij(T ) = −
〈γ∗i ,γ∗j 〉

‖γ∗i ‖2 ·
∥∥∥γ∗j∥∥∥

2

, (2.22)

where we’ve used that cos
(
φ∗ij

)
= cos(π − θij) = − cos(θij). This allows us to define the

notion of hyperacuteness in simplices as follows.

Definition 2.7. We call the simplex T ⊆ Rn−1 hyperacute if θij(T ) ≤ π/2 for all i, j ∈ [n].
If T is not hyperacute, it is called obtuse.

To summarize, a simplex T in Rn−1 is the convex hull of n affinely independent vectors.
We can assign to T a centred simplex T ∗ whose vertex vectors are normal to the facets of
T . We call T ∗ the dual simplex. It is unique up to translation.
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Chapter 3

The Graph-Simplex Correspondence

The right understanding of any matter and a mis-
understanding of the same matter do not wholly ex-
clude each other.

— Franz Kafka, The Trial

Why, sometimes I’ve believed as many as six im-
possible things before breakfast.

— Lewis Carroll, Alice’s Adventures in
Wonderland

In this chapter we introduce the graph-simplex correspondence and explore its mathemat-
ical foundations. While the focus of this dissertation is specifically on the simplices arising
from the Laplacian matrices of graphs, we begin by introducing the more general relationship
between matrices and convex polytopes. The correspondence between graphs and simplices
will then follow as a consequence.

§3.1. Convex Polyhedra of Matrices

Here we introduce the polytope associated with a given matrix (we will use the words poly-
hedron and polytope interchangeably throughout this manuscript). Let M ∈ Rn×n be PSD
and admitting of the eigendecomposition M =

∑d
i=1 λiϕiϕ

t
i for some d ≤ n (i.e., M has

eigenvalue zero with multiplicity n − d) where the eigenvectors {ϕi}di=1 are orthonormal.
Writing out the eigendecomposition as

M = ΦMΛMΦt
M = (ΦMΛ

1/2
M )(ΦMΛ

1/2
M )t,

with ΦM = (ϕ1, . . . ,ϕd), ΛM = diag(λ1, . . . , λd) (note the absences of ϕd+1, . . . ,ϕn and

λd+1, . . . , λn respectively), suggests that we might consider Λ
1/2
M ΦM as a vertex matrix, thus

M as a gram matrix. Inorexably compelled by this intuition, define the vertices σ1, . . . ,σn
given by the columns of Λ

1/2
M Φt

M , i.e.,

σi = (Λ
1/2
M Φt

M )(·, i) = (ϕ1(i)λ
1/2
1 ,ϕ2(i)λ

1/2
2 , . . . ,ϕd(i)λ

1/2
d )t ∈ Rd,
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where we emphasize that the vertex vector will have real entries since λj > 0 for all j ∈ [d]
since M is PSD. We may now define the polytope of the matrix M as the polytope given by
their convex hull:

PM
def
= conv(σ1, . . . ,σn).

Letting Σ = Σ(PM ) = (σ1, . . . ,σn) ∈ Rd×n be the matrix whose i-th column is the i-

th vertex σi—henceforth called the vertex matrix of PM—we see that Σ = Λ
1/2
M Φt

M =

(ΦMΛ
1/2
M )t, and

ΣtΣ = (ΦMΛ
1/2
M )(ΦMΛ

1/2
M )t = ΦMΛMΦt

M = M .

Observe that the polytope TM is d-dimensional, i.e., its vertices span a d-dimensional sub-
space, since rank(Σ) = rank(ΣtΣ) = rank(M) = d, where we’ve employed Lemma 2.2 and
the fact that M has rank d due to its eigendecomposition. We thus conceptualize PM as a
polytope in Rd.
Remark 3.1. The ordering of the non-zero eigenvalues did not enter our considerations when
defining PM . Let us consider re-ordering the indices; take τ : [d]→ [d] to be any permutation
and {στi } be the vertices as they would be defined under the ordering given by τ . Hence

στi (j) = ϕτ−1(j)(i)λ
1/2
τ−1(j)

. The pairwise distances between these vertices then obey

‖στi − στk‖
2
2 =

d∑
j=1

λτ−1(j)(ϕτ−1(j)(i)−ϕτ−1(j)(k))2 =
d∑
j=1

λj(ϕj(i)−ϕj(k))2 = ‖σi − σj‖22,

since τ is a bijection, hence summing over τ−1(j) yields the same result as summing from 1 to
d. Therefore, we see that the polytopes conv(στ1 , . . . ,σ

τ
n) and conv(σ1, . . . ,σn) are congruent.

In fact, since they share the same centroid they are simply rotations of one another.

3.1.1. The Inverse Polytope

Given that we can associate a polytope with the matrix M , it is natural to wonder about the
relationship between this polytope and that associated to M−1 if M is invertible, or with
its pseudoinverse M+ more generally. As illustrated in Section 2.2.1, with the eigendecom-
position of M as above, we can write the pseudoinverse as

M+ =

d∑
i=1

λ−1
i ϕiϕ

t
i = ΦMΛ−1

M Φt
M .

We can thus associate with M+ a polytope PM+ , which has as its vertex matrix Σ(PM+) =

(ΦMΛ
−1/2
M )t; that is, the vertices {σ+

i } of PM+ are defined by σ+
i (j) = ϕj(i)/λ

1/2
j . We call

PM+ the inverse polytope of M .

Let us observe several properties of the relationship between PM and PM+ . In what
follows we drop the subscript M from the eigenvalue and eigenvector matrix. Note that
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because of the orthogonality relationships among eigenvectors of M ,

ΦtΦ =

〈ϕ1,ϕ1〉 . . . 〈ϕ1,ϕd〉
...

. . .
...

〈ϕd,ϕ1〉 . . . 〈ϕd,ϕd〉

 = Id.

Consequently,
M+M = ΦΛΦtΦΛ−1Φt = ΦΛΛ−1Φt = ΦΦt,

and similarly MM+ = ΦΦt. As it happens, the vertex matrices of PM and P+
M satisfy the

same pseudoinverse relation:

ΣtΣ+ = ΦΛ1/2Λ−1/2Φt = ΦΦt,

and similarly, (Σ+)tΣ = ΦΦt. Using the properties of the relationship between a matrix and
its pseudoinverse immediately yields the following result.

Lemma 3.1. Let Σ = Σ(M) and Σ+ = Σ(M+) be the vertex matrices of PM and PM+

where M is a real and symmetric matrix. The matrices ΣtΣ+ and (Σ+)tΣ are equal and act
as the orthogonal projection onto range(M). Moreover, (I − ΣtΣ+) acts as the orthogonal
projection onto ker(M).

Proof. Apply Lemma 2.4. �

Further exploring the relationships between the vertex matrices, we find that

ΣΣt =


∑

i σi(1)σi(1) . . .
∑

i σi(1)σi(n)
...

. . .
...∑

i σi(n)σi(1) . . .
∑

i σi(n)σi(n)



=

 λ1〈ϕ1,ϕ1〉 . . . λ
1/2
1 λ

1/2
n 〈ϕ1,ϕn〉

...
. . . · · ·

λ
1/2
1 λ

1/2
n 〈ϕn,ϕ1〉 . . . λn〈ϕn,ϕn〉

 = Λ, (3.1)

and likewise,

Σ̂
+

(Σ̂
+

)t = Λ−1. (3.2)

In summary, any real PSD matrix M ∈ Rn×n of rank d yields a d-dimensional convex
polytope PM in Rd×d. The vertex matrices of PM and PM+—the polytope of the pseudoin-
verse ofM—when multiplied together are equal to and hence satisfy the projection properties
of M+M . In the next section we will explore how to apply this result to graphs.

§3.2. A Bijection Between Graphs and Simplices

This section introduces the graph-simplex correspondence—the core of which is a bijective
mapping between the set of all (finite) connected, weighted, and undirected graphs and
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hyperacute simplices. We begin by exploring the simplices associated with a given graph.
The subsequent section will then demonstrate how to extract a graph from an arbitrary
hyperacute simplex.

3.2.1. The Simplices of a Graph

Fix a (connected, undirected, and) weighted graph G = (V,E,w). The previous section
yields several polytopes related to G by means of its Laplacian matrices. In particular, we

obtain the polytopes SG
def
= PLG and ŜG

def
= P

L̂G
corresponding to the combinatorial and

normalized Laplacians, respectively. (The reasoning behind the nomenclature will quickly
become apparent.) We let Σ = Σ(SG) = (σ1, . . . ,σn) and Σ̂ = Σ(ŜG) = (σ̂1, . . . , σ̂n) denote

the vertices of SG and ŜG, respectively. We recall that Σ = Λ1/2Φt (resp., Σ̂ = Λ̂1/2Φ̂
t
))

where Λ (resp., Λ̂) is the diagonal matrix containing the non-zero eigenvalues of LG (resp.,
L̂G) and Φ (resp., Φ̂) the matrix of the corresponding (normalized) eigenvectors. Since
rank(LG) = rank(L̂G) = n − 1, the polytopes SG and ŜG are simplices—a fact which is
demonstrated more directly by the following Lemma.

Lemma 3.2. The vertices {σi} and {σ̂i} are affinely independent.

Proof. Suppose α = (α1, . . . , αn) is such that
∑n

i=1 αiσi = 0, i.e., α ∈ ker(Σ). Since
ker(Σ) = ker(ΣtΣ) = ker(L) = span({1}), there exists some k ∈ R such that α = k1. If
〈α,1〉 = 〈k1,1〉 = kn = 0 however, then we must have k = 0, demonstrating that αi = 0 for
all i. Hence the vectors {σi} are affinely independent. Likewise, if α ∈ ker(Σ̂) = ker(L̂) =
span({

√
w}), then α = k

√
w. But 〈k

√
w,1〉 = k

∑
i

√
w(i) = 0, so α = 0. As above, this

implies that {σ̂i} is affinely independent. �

We will refer to SG as the combinatorial simplex of G or simply the simplex of G, and
to ŜG as the normalized simplex of G. If G is clear from context we may drop it from the
subscript. As per Section 3.1.1, we also introduce the inverse simplex and inverse normalized

simplex of G, which have respective vertex matrices Σ+ = Λ−1/2Φt and Σ̂
+

= Λ̂−1/2Φ̂
t
.

We will often refer to the pair SG and S+
G as the combinatorial simplices of G, and the

pair ŜG and Ŝ+
G as the normalized simplices of G, to avoid the tedious task of constantly

referring to, say, the combinatorial simplex and its inverse.

As illustrated by the discussion at the end of Section 3.1.1, the vertex matrices of the
polytope of a matrix and its inverse share the same relationship as the matrix and its pseu-
doinverse (Lemma 3.1). Since this relationship is well understood for the Laplacian and its

pseudoinverse, we may explicitly compute the relationships between Σ,Σ+ and Σ̂, Σ̂
+

.

Let Φ̃ be the matrix containing all eigenvectors of LG (i.e., also containing 1/
√
n). It

is well known that Φ̃ is an orthogonal matrix (see e.g., [VM13]), i.e., Φ̃
t
Φ̃ = Φ̃Φ̃

t
= I,

a property which is also called double orthogonality. When expanded, this second equality
implies that

δi,j =

n∑
k=1

ϕk(i)ϕk(j) =

n−1∑
k=1

ϕk(i)ϕk(j) + 1/n. (3.3)
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From this, it follows that 〈σ+
i ,σj〉 = δi,j − 1/n, hence,

ΣtΣ+ = (Σ+)tΣ = I− J

n
. (3.4)

Beyond simply exemplifying an elegant relationship between Σ and Σ+, this also demon-
strates the following important result.

Observation 3.1. The dual simplex of SG is equal to the inverse simplex S+
G .

Proof. Recall that the dual simplex is the unique simplex with vertices σ∗i obeying 〈σ∗i ,σj −
σk〉 = δij for i, j 6= k. The vertices σ+

i satisfy this property: 〈σ+
i ,σj − σk〉 = (δij − 1/n)−

(δik − 1/n) = δij since i 6= k. �

Let θ+
ij be the interior angle between S+

{i}c and S+
{j}c . Since S+ is dual to S, Equation

(2.22) gives

cos θ+
ij = − 〈σi,σj〉

‖σi‖2‖σj‖2
=

w(i, j)√
w(i)w(j)

∈ [0, 1],

hence θ+
ij ∈ [0, π/2], which proves the following observation.

Observation 3.2. The inverse combinatorial simplex of a graph is hyperacute.

We turn our attention now to the normalized simplices. Double orthogonality also holds

for the eigenvectors of the normalized Laplacian and so, recalling that ϕn ∈ span(W
1/2
G 1),

(Section 2.3.1) we can write

ϕn =

√
w

(vol(G))1/2
,

where we recall that vol(G) =
∑

i∈[n]w(i). Therefore, ϕ̂n(i)ϕ̂n(j) =
√
w(i)w(j)/vol(G),

implying that

δi,j =
n∑
k=1

ϕ̂k(i)ϕ̂k(j) =
n−1∑
k=1

ϕ̂k(i)ϕ̂k(j) +

√
w(i)w(j)

vol(G)
,

and so

Σ̂
t
Σ̂

+
= (Σ̂

+
)tΣ̂ = I−

√
w
√
w
t

vol(G)
. (3.5)

It is worth emphasizing the fact that this inverse relationship is a function of the weights of
the graph for the normalized simplex, while it is constant for the combinatorial simplex. As
we will see, this dependency on w will severely complicate the relationship between ŜG and
Ŝ+
G , making their study more complicated than that of SG and S+

G .

3.2.2. The Graph of a Simplex

We now proceed to demonstrating that each centred hyperacute simplex is the inverse simplex
of a graph G. This will constitute the second half of the bijective relationship between graphs
and simplices.
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Lemma 3.3. Given a simplex T ⊆ Rn−1 centered at the origin, let {ui} be vectors describing
its outer normal directions, though with no particular length. Let Q be their Gram matrix;
i.e., Q(i, j) = 〈ui,uj〉. If Q1 ∈ Rn×n is the diagonal matrix containing the norms of the
outer normals,

Q1 = diag

(
‖u1‖2, . . . , ‖un‖2

)
,

and Q2 ∈ Rn×n describes the angles in the simplex,

Q2(i, j) =

{
1, if i = j,

− cos θi,j , otherwise,

where θi,j is the (interior) angle between T{i}c and T{j}c, then Q = Q1Q2Q1.

Proof. Using Equation (2.22) from the discussion in Section 2.5.2, we can write the entries
of Q2 as

〈γ∗i ,γ∗j 〉

‖γ∗i ‖2
∥∥∥γ∗j∥∥∥

2

,

where {γ∗i } are the vertices of T ∗ (note that this holds for i = j as well). Lemma 2.14 implies
that these vertices are parallel to the outer normals of T , hence γ∗i = κiui where κi ∈ R>0.
Therefore,

(Q1Q2Q1)(i, j) = ‖ui‖2
〈κiui, κjuj〉
‖κiui‖2‖κjuj‖2

‖uj‖2 =
κiκj
|κi||κj |

〈ui,uj〉 = 〈ui,uj〉 = Q(i, j). �

Let T be a hyperacute simplex, and T ∗ its dual. The vertex matrix Σ∗ of T ∗ contains
the outer normals of T (see discussion on dual simplex in Section 2.5.1). Hence, taking
Q = (Σ∗)tΣ∗ in the above lemma applied to the simplex T , we obtain explicit entries for
this Gram matrix:

((Σ∗)tΣ∗)(i, j) =

‖σ
∗
i ‖

2
2, if i = j,

− cos θi,j‖σ∗i ‖2 ·
∥∥∥σ∗j∥∥∥

2
, if i 6= j.

We claim that Q is the Laplacian matrix of some graph G. First, the matrix is symmetric.
Second, for each i, Q(i, i) = ‖σ∗i ‖

2
2 > 0, and for i 6= j, Q(i, j) ≤ 0 since θi,j ≤ π/2 by

assumption (note therefore the importance that T is hyperacute). Finally, denote Σ∗ =
(σ∗1, . . . ,σ

∗
n), and recall from the construction of the dual simplex in Section 2.5.1 that

σ∗n = −
∑

i<n σ
∗
i . Therefore, for i 6= n,

n∑
j=1

Q(i, j) =

n−1∑
j=1

〈σ∗i ,σ∗j 〉+ 〈σ∗i ,−
∑
j<n

σ∗j 〉 =
∑
j<n

〈σ∗i ,σ∗j 〉 −
∑
j<n

〈σ∗i ,σ∗j 〉 = 0,

hence Q1 = 0, meaning that Q(i, i) = −
∑

j 6=iQ(i, j). If we construct a weighted graph
G = (V,E,w) on n vertices with edge weights w(i, j) = −Q(i, j), it then follows that
Q = (Σ∗)tΣ∗ = LG. Thus, the simplex T ∗ is congruent to the combinatorial simplex of
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G (by virtue of the fact that 〈σ∗i ,σ∗j 〉 = LG(i, j)), and T is (congruent to) the dual of the
combinatorial simplex of G.

Remark 3.2. All the faffing1 about with congruence is, unfortunately, necessary. If G is
the graph constructed from the simplex T as above, there is no reason that its inverse
combinatorial simplex S+

G as constructed in Section 3.2.1 will be precisely T . In fact, this
is highly unlikely. The construction of G from T and its dual T ∗ used only the magnitudes
of the vectors {σ∗i } and not their absolute position. Thus, any rotation of T would produce
the same graph. It is for this reason that the relationship between graphs and simplices must
deal with congruence relationships.

We summarize the material in Sections 3.2.1 and 3.2.2 with the following theorem.

Theorem 3.1. There exists a bijection between (the congruence classes of) hyperacute sim-
plices in Rn−1 and connected, weighted graphs on n vertices.

Several observations are in order. First, the astute reader may wonder why it was nec-
essary in this section to explore the relation between a given hyperacute simplex T and its
corresponding graph by means of the dual simplex T ∗. We point out that in order to demon-
strate that T is congruent to the inverse simplex of G, one would have to have a firm grasp of
the structure of L+

G, which is much more poorly understood in general than LG. For instance,
would one have to argue that there exists a graph G such that Σ(T )tΣ(T ) = L+

G. This seems
difficult to do in general since, for example, even the sign of the entries of L+

G aren’t known.

Second, considering that Theorem 3.1 was proved using combinatorial simplices, one might
wonder whether a similar relationship holds between “normalized” simplices and graphs.
That is, given T , when is T ∗ the normalized simplex of a graph? Since the vertices of the
normalized simplex lie on the unit sphere however, we would require that ‖σ∗i ‖2 = 1. This
only holds for a very restricted class of simplex.

§3.3. Examples & Simplices of Special Graphs

In this section we provide several examples of simplices of graphs in order to give the reader
a more intuitive feeling of the correspondence. In Appendix C, we also give visualizations of
all four simplices of all unweighted graphs on 4 vertices.

Fix a graph G = (V,E,w). We begin by considering the simplices generated by three
special graphs relating to G—the complement graph Gc, an arbitrary subgraph of G, and the
case in which G is a product graph. We then proceed to analyzing several concrete examples.

Simplex of complement graph, Gc. Suppose that G is unweighted; so w(i, j) ∈ {0, 1}
for all i, j. The complement graph of G, denoted Gc, is the graph Gc = (V,Ec) where
Ec = {(i, j) : (i, j) /∈ E}. That is, it has edges where G has none and vice versa. Therefore,

it has the adjacency matrix Ac def
= AGc = 11t − I − AG and degree matrix Dc def

= DGc =

1U.K. slang has obviously had its effect on me.

29



Chap. 3. The Graph-Simplex Correspondence Examples & Simplices of Special Graphs

(n− 1)I−DG since deg(i)Gc = n− 1− deg(i)G. The Laplacian of Gc thus reads as

Lc = Dc −Ac = nI−DG − 11t +AG = nI− 11t −LG.

Of course, 1 is still an eigenfunction of Lc (Gc is, after all, a graph). For ϕ ⊥ 1, we have
Lcϕ = nϕ − 1〈1,ϕ〉 − Lϕ = (n − λ)ϕ from which it follows that Lc shares the same
eigenfunctions as L, with corresponding eigenvalues {n − λi}. Consequently, the simplex
corresponding to Gc, Sc, has vertices given by σi(j) = ϕj(i)

√
n− λj , and the inverse simplex

has vertices σ+
i (j) =

ϕj(i)√
n−λj

.

Subgraphs. Let H ⊆ G, in the sense that wH(i, j) ≤ wG(i, j) for all i, j ∈ [n] (we allow
for G to be weighted once again). Then, for any f : V → R we see that

LG(f) =
∑
i∼j

wG(i, j)(f(i)− f(j))2 ≥
∑
i∼j

wH(i, j)(f(i)− f(j))2 = LH(f).

Therefore,
‖ΣHf‖22 ≤ ‖ΣGf‖22.

In particular, taking f = χi for any i, this yields ‖σi(G)‖22 ≥ ‖σi(H)‖22, where {σi(G)} are
the vertices of SG, and {σi(H)} those of SH . That is, the length of the vertex vectors of G
is greater than those of H.

If G is a multiple of H such that wG(i, j) = c · wH(i, j) for all i, j, then we see that
LG(f) = c · LH(f) so that ‖σi(G)‖22 = c · ‖σi(H)‖22. This gives us a sense that volume of the
simplex of the supergraph is greater than that of the subgraph. This notion will be made
more precise in Section 4.2.

Meanwhile however, the normalized simplex is unaffected by the re-weighting:

L̂G(f) =
∑
i∼j

wG(i, j)

(
f(i)√
wG(i)

− f(j)√
wG(j)

)2

=
∑
i∼j

c · wH(i, j)

(
f(i)√
c · wH(i)

− f(j)√
c · wH(j)

)2

=
∑
i∼j

wH(i, j)

(
f(i)√
wH(i)

− f(j)√
wH(j)

)2

= L̂H(f),

implying that ‖σ̂i(G)‖2 = ‖σ̂i(H)‖.

Product graphs. We begin with the definition of a product graph.

Definition 3.1. Given two graphs G = (V (G), E(G)) and H = (V (H), E(H)), the product
graph of G and H is the graph with vertex set V (G)× V (H) and edge set {((i1, j), (i2, j)) :
(i1, i2) ∈ E(G), j ∈ V (H)} ∪ {((i, j1), (i, j2)) : (j1, j2) ∈ E(H), i ∈ V (G)}. It is denoted
G×H.
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Figure 3.1: Two graphs and their product graph.

In order to investigate the simplex of a product graph, we must better understand its
eigenstructure. The proof can be found in Appendix A.2.

Lemma 3.4. Let graphs G and H be given. Put n = |V (G)| and m = |V (H)|. Suppose G has
eigenvalues λ1 ≥ · · · ≥ λn and corresponding eigenvectors ϕ1, . . . ,ϕn, as usual. Let H have
eigenvalues µ1 ≥ · · · ≥ µm and corresponding eigenvectors ψ1, . . . ,ψm. Then G × H has
mn eigenvalues {λi + µj}(i,j)i∈[n]×[m] with eigenvectors {fi,j}(i,j)∈[n]×[m] given by fi,j(k, `) =
ϕi(k)ψj(`).

Consequently, with G and H as in Lemma 3.4, we see that the product graph yields a
simplex SG×H ∈ Rmn−1 with vertices {σij}(i,j)∈[n]×[m] given by

σij(k`) = fk`(ij)(λk + µ`)
1/2.

3.3.1. Examples

We now move onto concrete examples of the simplices of particular graphs whose eigenstruc-
tures we can compute explicitly. We also compute the graph of perhaps the most well-known
simplex: the probability simplex.

The complete graph, Kn. Let us consider the combinatorial simplex S = SKn . The
Laplacian LKn has two eigenvalues: 0 with multiplicity 1 and n with multiplicity n− 1. To
see this, observe that for any ϕ perpendicular to 1, we have

LKnϕ =

(
ϕ(1)(n− 1)−

∑
i 6=1

ϕ(i), . . . ,ϕ(n)(n− 1)−
∑
i 6=n

ϕ(i)

)

=

(
ϕ(1)n−

∑
i

ϕ(i), . . . ,ϕ(n)n−
∑
i

ϕ(i)

)
= (ϕ(1)n, . . . ,ϕ(n)n) = nϕ,

since
∑

iϕ(i) = 〈ϕ,1〉 = 0. Let Q be the matrix which rotates each vector by π/4 about
each axis. Thus Qe1 = 1, and n − 1 orthogonal eigenvectors are given by Qe2, . . . ,Qen.
Hence the vertices of S are given by σi(j) =

√
n(Qej+1)(i).
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The Cycle graph, Cn. The cycle graph Cn has edge set E = {(i, j) : j = i + 1 mod n}.
We assume that n is even for this example. One can verify by direct computation that the
eigenvalues and eigenvectors of LCn are given by

ϕi(j) = cos

(
2π(i− 1)j

n

)
, λi = 2− 2 cos

(
2π(i− 1)

n

)
,

for i = 1, . . . , n/2 + 1, and

ϕi(j) = cos

(
2π(i− n/2− 1)j

n

)
, λi = 2− 2 cos

(
2π(i− n/2− 1)

n

)
,

for i = n/2 + 2, . . . , n. Therefore, the vertices of SCn are given by

σi(j) =


cos
(

2π(i−1)j
n

)(
2− cos

(
2π(i−χ(j>n/2+1)n/2−1)

n

))
, i ≤ n/2 + 1,

sin
(

2π(i−n/2−1)j
n

)(
2− cos

(
2π(i−χ(j>n/2+1)n/2−1)

n

))
, i > n/2 + 1.

The probability simplex. Fix n ∈ N. The probability simplex is the simplex S̃p =
conv({χi}ni=1 ∪ {0}). It is most likely the simplex of greatest familiarity to mathematicians
and computer scientists, being used to reason geometrically about probability distributions.
The probability simplex has centroid 1/n 6= 0 and we will consider its centred version

Sp
def
= S̃p −

J

n
,

which has vertices σi = χi − 1/n, i < n, and σn = −1/n. Note that σj − σn = χj and so
〈χi,σj −σn〉 = δij . Taking σ∗i = χi and σ∗n = −

∑
iχi = −1 thus gives us the dual vertices.

The angles between the facets of Sp are thus defined by

cos θij(Sp) = −
〈χi,χj〉
‖χi‖2

∥∥χj∥∥2

= −δij ,

for i, j ∈ [n− 1] and

cos θin(Sp) = − 〈χi,−1〉
‖χi‖2‖1‖2

= 1/
√
n,

for all i ∈ [n]. This implies that θij(Sp) = 0 for i 6= j, i, j 6= n and θin(Sp) ∈ (0, π/2).
Using the construction of Section 3.2.2, we associate to Sp the graph with Laplacian matrix
Σ(S∗p )tΣ(S∗p ), where Σ(S∗p ) = (σ∗1, . . . ,σ

∗
n). This matrix has (i, j)-th entry 1 for i = j, 1 for

i = n or j = n, and 0 otherwise. This graph thus has each vertex connected to n, but to no
others. That is, the graph of the probability simplex Sp is the star graph on n vertices.
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§3.4. Properties of SG and S+
G

We now embark on our voyage to understand the mathematical properties of the simplices of
a graph. This section is devoted to the study of SG and S+

G , while Section 3.5 is concerned

with ŜG and Ŝ+
G . For bibliographic purposes, we will encode many of the results as lemmas

even if they are relatively simple. There are many results, and this should enable easier
accounting. We begin with three basic observations.

Lemma 3.5. The following three properties hold:

1. Both SG and S+
G are centred at the origin;

2. The squared distance between the vertices of S+
G is equal to the effective resistance

between the corresponding vertices of G;

3. For any non-empty U ( V , the faces SU and S+
Uc are orthogonal.

Proof. For (i) we simply compute c(S) = n−1Λ−1/2Φt1 = 0, since 〈ϕi,1〉 = 0 for all i < n.
Likewise, c(S+) = 0. For (ii),∥∥∥σ+

i − σ
+
j

∥∥∥2

2
=
∥∥σ+

i

∥∥2

2
+
∥∥∥σ+

j

∥∥∥2

2
− 2〈σ+

i ,σ
+
j 〉 = L+

G(i, i) +L+
G(j, j)− 2L+

G(i, j) = reff(i, j).

The third property follows as a result of the fact that S+
G is dual to SG (Observation 3.1)

and Lemma 2.14. �

Property (ii) in the previous lemma was first noticed by Fielder [Fie11, Chapter 6], and
was also remarked upon by Van Mieghem et al. [VMDC17] who used it in their study of best
spreader nodes in electrical networks. We will return to this connection in later sections. We
now turn our attention to properties of the angles of a simplex.

Lemma 3.6. The combinatorial simplex SG of a graph G is hyperacute iff L+
G is a Laplacian.

Proof. Using Equation (2.22) and the fact that S+
G = S∗G (Observation 3.1), we have

cos θij = −
〈σ+

i ,σ
+
j 〉∥∥σ+

i

∥∥
2

∥∥∥σ+
j

∥∥∥
2

,

where we recall that θij is the angle between S{i}c and S{j}c . Thus, SG is hyperacute iff

−〈σ+
i ,σ

+
j 〉/
∥∥σ+

i

∥∥
2

∥∥∥σ+
j

∥∥∥
2
∈ [0, 1],

which occurs iff 〈σ+
i ,σ

+
j 〉 ≤ 0. In this case L+

G(i, j) ≤ 0, implying that L+
G is a Laplacian

(recall that it already satisfies the other required properties: L+
G1 = 0 and L+

G(i, i) ≥ 0). �

Corollary 3.1. The combinatorial simplex SKn of the complete graph Kn is hyperacute.
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Proof. Let L = LKn . It suffices to show by the previous lemma that L+ = L+
Kn

is a Laplacian.

We’ve already seen that L+
G1 = 0 for any G, so it remains only to show that L+(k, k) > 0

for all k ∈ [n] and L+(k, `) ≤ 0 for all k 6= `, i.e., that sign(L(k, `)) = sign(L+(k, `)) for
all k, `. Recall from Section 3.3.1 that Kn has eigenvalue n with multiplicity n − 1 and
a single zero eigenvalue. Hence, L = n

∑
i<nϕiϕ

t
i and L+ = n−1

∑
i<nϕiϕ

t
i. Therefore,

sign(L(k, `)) = sign(n
∑

i<nϕi(k)ϕi(`)) = sign(
∑

i<nϕi(k)ϕi(`)) = sign(L+(k, `)) which
implies the result. �

Before continuing, we make a brief detour to demonstrate how this result combined with
the link between S+

G and the effective resistance of G allows us to uncover the total effective
resistance of certain graphs. Recalling that Rtot

G is the total effective resistance in G, apply
Lemma 3.5 and write

Rtot
G =

1

2

∑
i,j∈[n]

reff(i, j) =
1

2

∑
i,j∈[n]

∥∥∥σ+
i − σ

+
j

∥∥∥2

2

=
n

2

∑
in[n]

∥∥σ+
i

∥∥2

2
+
n

2

∑
j∈[n]

∥∥∥σ+
j

∥∥∥2

2
− 2

∑
i,j∈[n]

〈σ+
i ,σ

+
j 〉

= n
∑
i∈[n]

∥∥σ+
i

∥∥2

2
− 2

∑
i∈[n]

〈LG(i, ·),1〉 = n
∑
i∈[n]

∥∥σ+
i

∥∥2

2
.

Let Kα
n denote the complete graph on n vertices where each edge has weight α. By

Corollary 3.1, L+
Kα
n

= LH for some graph H. Therefore, LKα
n

= L+
H and

∥∥σ+
i (H)

∥∥2

2
=∥∥σi(LKα

n
)
∥∥2

2
. If Kn is the unweighted complete graph, we see that LKα

n
= αLKn . Using

that LKn has eigenvalue n with multiplicity n−1 (Section 3.3.1) gives LKα
n

= αn
∑

i<nϕiϕ
t
i,

meaning that LKα
n

= L+
H has eigenvalue αn with multiplicity n− 1. The effective resistance

of H is then
Rtot
H = nTr

(
L+
H

)
= α(n− 1).

Moreover, LH has eigenvalue (αn)−1 with multiplicity n − 1, and is therefore a complete
graph with weights (αn2)−1. We have proven the following:

Lemma 3.7. For any complete graph H on n vertices with uniform edge weights (αn2)−1 for
any α, Rtot

H = α(n− 1).

As Fiedler pointed out [Fie93], the correspondence also allows us to answer questions
related to the distribution of angles in simplices. It is not, for example, a priori obvious that
all distributions of angles are possible in a hyperacute simplex, in the following sense.

Lemma 3.8. For every n− 1 ≤ k ≤
(
n
2

)
, there exists a hyperacute simplex on n vertices with

k strictly acute interior angles.

Proof. Fix k and consider a connected graph on n vertices with k edges (note the importance
that k ≥ n− 1). The interior angles {θ+

ij}i,j of S+
G obey

cos θ+
ij = − 〈σi,σj〉

‖σi‖2‖σj‖2
=

w(i, j)√
w(i)w(j)

,

34



Chap. 3. The Graph-Simplex Correspondence Properties of SG and S+
G

hence θij = π/2 whenever w(i, j) = 0, and θij ∈ (0, π/2) for all (i, j) ∈ E(G). Therefore, S+
G

meets the desired criteria. �

The following lemma presents an alternate characterization of the simplex, and was first
proved by Devriendt and Van Mieghem [DVM18]. As they notice, the following representation
provides an easy way to check whether a given point lies inside the simplex. As our proof is
similar to theirs, we move it to Appendix A.2.

Lemma 3.9 ([DVM18]). For a simplex S of a graph G,

S =

{
x ∈ Rn−1 : xtΣ+ +

1t

n
≥ 0t

}
. (3.6)

Just as each facet of a tetrahedron is contained in a plane and each edge is contained in an
infinite line, each face SU of a simplex U is contained in a flat (i.e., a linear subspace shifted
by some constant2) of dimension |U | − 1. The following lemma helps characterize these flats.

Lemma 3.10. Let S be the simplex of a graph G = (V,E,w), and fix U ⊆ V . For any
non-empty E ⊆ U c,

SU ⊆
{
x ∈ Rn−1 :

∑
i∈E
〈x,σ+

i 〉+
|E|
n

= 0

}
,

and

S+
U ⊆

{
x ∈ Rn−1 :

∑
i∈E
〈x,σi〉+

|E|
n

= 0

}
,

Proof. Let Σx ∈ SU be arbitrary. For any i ∈ U c we have 〈Σx,σ+
i 〉 = xtΣtΣ+χi = −1/n

because x is a barycentric coordinate with x(i) = 0. Hence, for any E ⊆ U c∑
i∈E
〈x,σ+

i 〉+
|E|
n

=
∑
i∈E

(
〈x,σ+

i 〉+
1

n

)
=
∑
i∈E

(
1

n
− 1

n

)
= 0,

implying that x is in the desired set. �

Lemma 3.10 gives us an alternate way to prove Lemma 3.9. For any i, taking U = N \{i}
and E = {i}, it implies that S{i}c is a subset of the hyperplane

Hi
def
= {x ∈ Rn−1 : 〈x,σ+

i 〉+ 1/n = 0}. (3.7)

See Figure 3.2 for an illustration. All points in the simplex S lie to one side of S{i}c , i.e.,
they lie in the halfspace

H≥i
def
= {x ∈ Rn−1 : 〈x,σ+

i 〉+ 1/n ≥ 0}.
2Also called an affine subspace.
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Figure 3.2: An illustration of the combinatorial simplex SG ⊆ R3 and its face S{i}c contained
in the hyperplane Hi.

(We know it is this halfspace because 0 ∈ S ∩H≥i .) The simplex is the interior of the region
defined by the intersection of the faces S{i}c , i.e.,

S =
⋂
i

H≥i . (3.8)

Moreover, x ∈
⋂
iH
≥
i iff 〈x,σ+

i 〉 + 1/n ≥ 0 for all i, i.e., (〈x,σ+
1 〉, . . . , 〈x,σ+

n 〉) + 1/n ≥ 0,
meaning x satisfies (3.6). We emphasize that a very similar discussion applies to S+, in
which case one has

S+ =
⋂
i

(H+
i )≥, (3.9)

for (H+
i )≥

def
= {x ∈ Rn−1 : 〈x,σi〉+ 1/n ≥ 0}.

Centroids and altitudes. We now turn to investigating the centroids and altitudes of the
simplices, and how they relate to properties of the underlying graph. We begin by exploring
the relationships between properties of the simplices themselves.

Recall that the altitude between SU and SUc of a simplex S is denoted a(SU ) and is the
unique vector p − q where p ∈ SUc and q ∈ SU which lies in the orthogonal complement of
both SU and SUc . One would thus expect that a(SU ) and a(SUc) to be antiparallel; a fact
verified by Lemma 3.11.

In what follows, we will often write cU for c(SU ) (resp., c+
U for c(S+

U )) and aU for a(SU )
(resp., a+

U for a(S+
U )).

Lemma 3.11 ([DVM18]). Let U ⊆ V be non-empty. Then the vectors c(SU ) and c(SUc) are
antiparallel. In particular, (n− |U |)c(SUc) = |U |c(SU ) and

c(SU )

‖c(SU )‖2
= − c(SUc)
‖c(SUc)‖2

.
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Proof. This is a straightforward computation: Observing that χU = 1− χUc we have

cU = |U |−1ΣχU = |U |−1Σ(1− χUc) = −|U |−1ΣχUc = −|U |−1 |U c|
|U c|

ΣχUc =
n− |U |
|U |

cUc ,

where we’ve used that Σ1 = 0. This proves the first result; the second follows from normal-
izing the two vectors. �

We would now like to examine the relationships between altitudes and centroids in the
simplex and its inverse. We will demonstrate that centroids of opposing faces are antiparallel,
and that the centroid of the face U is parallel to the altitude originating from the face
generated by U in the dual simplex. First however, we require the following technical result.

Lemma 3.12. Any vector perpendicular to SU can be written as Σ+(fUc + αχU ) for some
α ∈ R and vector fUc such that fUc(U) = 0.

Proof. Let y ∈ Rn−1 be orthogonal to SU . Since rank(Σ+) = n− 1, we can find some z such
that y = Σ+z =

∑
i∈Uc σ

+
i z(i) +

∑
j∈U σ

+
j z(j). Define f by f(U c) = z(U c) and f(U) = 0.

We can then write y as Σ+f+
∑

j∈U σ
+
j z(j), so we must show that z(U) is a constant vector.

The orthogonality of y to SU implies that for every two barycentric coordinates xU and yU
with x(U c) = y(U c) = 0,

0 = 〈y,ΣxU −Σyu〉

=
∑
i∈Uc

z(i)〈σ+
i ,Σ(xU − yU )〉+

∑
j∈U

z(j)〈σ+
j ,Σ(xU − yU )〉

=
∑
j∈U

z(j)〈σ+
j ,Σ(xU − yU )〉, (3.10)

where the final inequality follows because σ+
i is orthogonal to SU for i ∈ U c by Lemma 3.5.

Now, for j ∈ U ,

〈σ+
j ,Σ(xU − yU )〉 = χtjΣ

+Σ(xU − yU ) = χtj

(
I− J

n

)
(xU − yU ) = χtj(xU − yU ). (3.11)

Suppose for contradiction that z(k) 6= z(j) for some k, j ∈ U . Put xU = χk and yU = χj .
Using Equation (3.11) write (3.10) as

z(k)χtk(χk − χj) + z(j)χtj(χk − χj) +
∑

`∈Uc,` 6=j,k
z(`)χt`(χk − χj) = z(k)− z(j) 6= 0,

a contradiction. �

We can now proceed to the main result.

Lemma 3.13. For a simplex S of a graph G = (V,E) and any U ⊆ V , U 6= ∅,

a(SU )

‖a(SU )‖2
=

c(S+
Uc)∥∥c(S+
Uc)
∥∥

2

= −
c(S+

U )∥∥c(S+
U )
∥∥

2

, (3.12)
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and
a(S+

U )∥∥a(S+
U )
∥∥

2

=
c(SUc)
‖c(SUc)‖2

= − c(SU )

‖c(SU )‖2
.

Proof. We prove the first set of equalities only; the second is obtained similarly. By definition,
aU is orthogonal to both SU and SUc . Lemma 3.12 then implies both that

aU = Σ+f + αΣ+χU ,

and
aU = Σ+g + βΣ+χUc ,

for some α, β ∈ R, and vectors f , g with f(U) = 0 and g(U c) = 0. In particular then,

Σ+(f + αχU )∥∥Σ+(f + αχU )
∥∥

2

=
Σ+(g + βχUc)∥∥Σ+(g + βχUc)

∥∥
2

. (3.13)

By Lemma 3.11, taking f = ±χUc/|U c|, g = ∓χU/|U |, and α = β = 0 yield solutions to
the above equation. We have thus obtained Equation (3.12) up to its sign; it remains to
determine whether a(SU ) is parallel to antiparallel to c(S+

U ). Since it is one of the two, we
have

〈aU , c+
U 〉

‖aU‖2
∥∥c+

U

∥∥
2

∈ {1,−1},

hence to see that they are antiparallel it suffices to show that 〈aU , c+
U 〉 < 0. Let aU =

ΣyUc − ΣzU for barycentric coordinates yUc and zU representing the faces SUc and SU .
Then,

〈aU , c+
U 〉 =

1

n
〈Σ(yUc − zU ),Σχ+

U 〉

=
1

n
(ytUc − ztU )

(
I− J

n

)
χU

= − 1

n
ztUχU −

1

n2
(ytUc − ztU )11tχU

= − 1

n
< 0.

Therefore, aU is indeed antiparallel to c+
U , meaning that the correct signage is f = χUc/|U c|

and g = −χU/|U |. Thus,

aU
‖aU‖2

=
Σ+χUc∥∥Σ+χUc

∥∥
2

= − Σ+χU∥∥Σ+χU
∥∥

2

,

which is Equation (3.12). �

Remark 3.3. We note that there are no other solutions, up to scaling, of the system of
equations for aU in the previous proof. Indeed, let f , g, α, β satisfy the equations. Then

Σ+(f − βχUc) + Σ+(αχU − g) = 0,
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so f −βχUc +αχ− g ∈ ker(Σ+) = span(1), implying that f −βχUc = kχUc and αχU − g =
kχU for some k ∈ R, which yields the same solution as in the proof.

Whereas the previous few lemmas explored relationships among SG and S+
G only, we now

begin to observe several connections between the geometry of the simplices and properties of
the graph. We begin by recalling that given U ⊆ V (G) the cut-set of U is

∂U
def
= (U × U c) ∩ E(G) = {(i, j) ∈ E(G) : i ∈ U, j ∈ U c}.

Noting that |χU (i)− χU (j)| = χ(i,j)∈∂U , we see that

w(∂U) =
∑
i∼j

w(i, j)|χU (i)− χU (j)| =
∑
i∼j

w(i, j)(χU (i)− χU (j))2 = L(χU ).

Moreover, ‖c(SU )‖22 = 〈|U |−1ΣχU , |U |−1ΣχU 〉 = |U |−2L(χU ) and so

‖c(SU )‖22 =
w(∂U)

|U |2
. (3.14)

Via the same process we can also obtain an equivalent expression for the centroid of the
inverse simplex: ∥∥c(S+

U )
∥∥2

2
=
w(∂+U)

|U |2
, (3.15)

where we follow the notation of [DVM18] and define

w(∂+U)
def
= 〈Σ+χU ,Σ

+χU 〉 = 〈χU ,L+χU 〉 = L+(χU ). (3.16)

Equations (3.14) and (3.15) were also given in [DVM18]. As a sanity check, we note that the

equations are consistent with the facts that ‖σi‖22 = w(i) and
∥∥σ+

i

∥∥2

2
= L+(i, i) = L̂+(χi).

These equations allow us to give an interesting correspondence between the sizes of the
altitudes and cut-sets of G.

Lemma 3.14. For any non-empty U ⊆ V ,
∥∥a+

U

∥∥2

2
= 1/w(∂U) and ‖aU‖22 = 1/w(∂+U).

Proof. By definition of the altitude there exists barycentric coordinates xU and xUc such
that a+

U = Σ+(xU − xUc). Combining this representation of a+
U with that given by Lemma

3.13, write

∥∥a+
U

∥∥
2

=
〈a+

U ,a
+
U 〉∥∥a+

U

∥∥
2

=
〈Σ+(xUc − xU ), cUc〉

‖cUc‖2
=
〈Σ+(xUc − xU ),ΣχUc〉√

w(∂U c)
,

where the final equality comes from using the definition of the centroid in the numerator,
and Equation (3.14) in the denominator. Recalling the relation between Σ and Σ+ given by
Equation (3.4) and that xU and xUc are barycentric coordinates, we can rewrite the above
as

(xUc − xU )t(I− 11t/n)χUc√
w(∂U c)

=
1√

w(∂U c)
.
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Squaring both sides while noting that ∂U = ∂U c completes the proof of the first equality.
For the second, we proceed in precisely the same manner to obtain ‖aU‖22 = 1/w(∂+U c).
However, it’s not immediately obvious that w(∂+U c) = w(∂+U). To see this, first recall that
Σ+1 = Λ−1/2Φt1 = 0, and so

w(∂+U c) = 〈Σ+χUc ,Σ
+χUc〉

= 〈Σ+(1− χU ),Σ+(1− χU )〉
= 〈Σ+χU ,Σ

+χU 〉 = w(∂+U). �

The aforementioned astute reader may have noticed that the above result implies some-
thing about the computational difficulty of determining the length of the minimum and
maximum altitudes in hyperacute simplices. We tell this reader to “hold their horses”—this
result and others like it will be presented in Chapter 5.

The next two lemmas were both proven by Devriendt and Van Mieghem [DVM18], ex-
tending work done by Fiedler. The following lemma gives an explicit expression for the
altitudes in terms of graph properties and the inverse centroid.

Lemma 3.15. For any non-empty U ⊆ V ,

aU =
n− |U |
w(∂+U)

c+
Uc , and a+

U =
n− |U |
w(∂U)

cUc .

Proof. This is a consequence of identities (3.14) and (3.15) and Lemmas 3.13 and 3.14.
Applying the latter and then the former, observe that

aU =
‖aU‖2∥∥c+
Uc

∥∥
2

c+
Uc =

(
1√

w(∂+U c)

/√
w(∂+U)

|U c|

)
c+
Uc =

n− |U |
w(∂+U)

c+
Uc ,

where we’ve once against used that w(∂+U c) = w(∂+U). A similar computation holds for
a+
U . �

Just as one generalizes the incidence of a vertex to the neighbourhood of a set of vertices,
one can generalize an edge to the incidence between groups of vertices, as

∂U1 ∩ ∂U2 = {(i, j) ∈ E(G), i ∈ U1, j ∈ U2},

for U1, U2 ⊆ V (G). The final lemma gives an expression for the weight (or size) of this set in
terms of the altitudes and centroids of the simplices.

Lemma 3.16. Let U1, U2 ⊆ V with U1 ∩ U2 = ∅. Then

〈c(SU1), c(SU2)〉 = −w(∂U1 ∩ ∂U2)

|U1||U2|
, and 〈a+

U1
,a+

U2
〉 = − w(∂U c1 ∩ ∂U c2)

w(∂U1)w(∂U2)
.
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Proof. For i, j ∈ V , i ∼ j, observe that

χtU1
Li,jχU2

=

{
−w(i, j), i ∈ U1, j ∈ U2 or i ∈ U2, j ∈ U1,

0, otherwise.

Therefore,

〈cU1 , cU2〉 = 〈|U1|−1ΣχU1
, |U2|−1ΣχU2

〉 = |U1|−1|U2|−1χtU1
LGχU2

= |U1|−1|U2|−1
∑
i∼j
χtU1

L(i,j)χU2
= |U1|−1|U2|−1

∑
(i,j)∈∂U1∩∂U2

−w(i, j),

which proves the first equality. The second is shown similarly by employing Lemma 3.15 and
the previous identity:

〈a+
U1
,a+

U2
〉 =

|U c1 ||U c2 |
w(∂U1)w(∂U2)

〈cUc1 , cUc2 〉 = − w(∂U c1 ∩ ∂U c2)

w(∂U1)w(∂U2)
. �

Given the number of—often related and interacting—results in this section, it may be
worth providing a brief summary. The important takeaways are that (i) the geometry of the
inverse simplex S+ is intimately related to the effective resistance of the graph (Lemma 3.5)
and (ii) the lengths of the altitudes and centroids of S and S+ are proportional to the weights
of cuts (Equations (3.14), (3.15), Lemmas 3.14, 3.15, 3.16).

§3.5. Properties of ŜG and Ŝ+
G

Here we study the normalized simplex ŜG of the connected graph G = (V,E,w)—which we
again fix throughout this section—a somewhat less accessible object than its unnormalized
counterpart. The normalized simplex is, roughly speaking, distorted by the weights of the
vertices. Consequently, many of the relationships between SG and S+

G are lost between ŜG
and Ŝ+

G . The first issue is that, in general, ŜG and its inverse are not centred at the origin.

Indeed, recall that the zero eigenvector ϕ̂n of L̂G sits in the space span(W
1/2
G 1), which is

distinct from span(1) unless W
1/2
G = dI for some d, in which case G is regular (recall that

here, regular refers to weight-regular : each vertex has the same weight, not only the same

degree). If G is not regular, we thus have that ϕi ∈ span(W
1/2
G 1) ⊆ span(1)⊥ for all i < n

implying that 〈ϕi,1〉 6= 0. In this case then,

c(ŜG) =
1

n
Λ̂1/2Φ̂

t
1 =

1

n


√
λ1〈ϕ1,1〉

...√
λn−1〈ϕn−1,1〉

 6= 0.

Since ker(L̂
+

G) = ker(L̂G), the same reasoning applies to Ŝ+
G . This argument proves the

following.

Lemma 3.17. The centroid of ŜG coincides with the origin of Rn−1 iff G is regular.
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Given this, one might wonder whether the origin is even a point in the simplex Ŝ. It
is easily seen that it is, however. Consider the barycentric coordinate u =

√
w/
∥∥√w∥∥

1
,

where
√
w = (w(1)1/2, . . . , w(n)1/2). Since all eigenvectors ϕ̂i, i < n are orthogonal to

ϕn ∈ span(w1/2) it follows that 0 = Σ̂u ∈ Ŝ.

The next set of properties which don’t hold between Ŝ and Ŝ+ are the orthogonality
relationships present between a simplex and its dual. Since dual simplices are centred by
definition, Lemma 3.17 demonstrates that Ŝ+

G cannot be the dual of ŜG unless G is regular.

However, we might suspect that the centred simplex corresponding to Ŝ+
G is dual to ŜG. The

following lemma dashes these hopes.

Lemma 3.18. The centred simplex (Ŝ+
G )0 is the dual of ŜG iff G is regular.

Proof. First note that for any i, j,

〈σ̂+
i , σ̂j〉 = χti(Σ̂

+
)tΣ̂χj = χti

(
I−
√
w
√
w

vol(G)

)
χj = δij −

√
w(i)w(j)

vol(G)
.

Now if G is regular then Ŝ+
0 = Ŝ+ by Lemma 3.17. In this case, for all i, j 6= k,

〈σ̂+
i , σ̂j − σ̂k〉 = δij − δij +

√
w(i)w(k)

vol(G)
−
√
w(i)w(j)

vol(G)
= δij ,

since w(i) = w(j) = w(k). This proves duality. Now suppose that G is not regular. For any
j, k note that,

1

n

∑
`∈[n]

〈σ̂+
` , σ̂j − σ̂k〉 =

1

n

∑
`∈[n]

(
δ`j − δ`k +

√
w(`)

vol(G)
(
√
w(k)−

√
w(j))

)

=

√
w(k)−

√
w(j)

nvol(G)

∑
`∈[n]

√
w(`) =

√
w(k)−

√
w(j)

nvol(G)

∥∥√w∥∥
1
.

Recall that the simplex Ŝ+
0 has vertices {σ̂+

i − c} where c = c(Ŝ+
G ). For any i, j 6= k ∈ N

compute

〈σ̂+
i − c, σ̂j − σ̂k〉 = 〈σ̂+

i , σ̂j − σ̂k〉 −
1

n

∑
`∈[n]

〈σ̂+
` , σ̂j − σ̂k〉

= δij +

(√
w(i)

vol(G)
−
∥∥√w∥∥

1

nvol(G)

)(√
w(k)−

√
w(j)

)
Choose j, k such that w(j) 6= w(k) (this is possible if G is not regular). Then the above is
equal to δij (which is necessary if Ŝ+

0 is dual to Ŝ) iff√
w(i) =

1

n

∥∥√w∥∥
1
.

Thus, we see that {σ̂+
i c} is not the sister set of {σ̂j − σ̂k}, completing the argument. �
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A consequence of the previous Lemma is that we can no longer apply Lemma 2.14 (re-
garding the orthogonality of TU and T ∗Uc) to obtain information concerning ŜU and Ŝ+

Uc .
The following two lemmas and corresponding corollary address the link between these faces,
and—rather unfortunately—demonstrate that indeed, they are not orthogonal in general.
The first gives sufficient conditions under which the faces are orthogonal, the second provides
necessary conditions. Before we state the lemmas, recall from Section 2.3 that a subset of
vertices is weight homogenous if each vertex in the set has the same weight.

Lemma 3.19. Let U1, U2 ⊆ V (G) be two non-empty, weight homogenous subsets such that
U1 ∩ U2 = ∅. Then the faces Ŝ+[U1] and Ŝ[U2] are orthogonal.

Proof. Suppose w(i) = w1 for all i ∈ U1 and w(i) = w2 for all i ∈ U2. Let xU1 be the
barycentric coordinate of any point in Ŝ+[U1] and xU2 that of any point in Ŝ[U2].

〈Σ̂
+
xU1 , Σ̂xU2〉 = xtU1

(
I−
√
w
√
w
t

vol(G)

)
xU2

= xtU1
xU2 −

1

vol(G)

∑
i∈U1

xU1(i)
√
w(i)

∑
j∈U2

xU2(j)
√
w(j)

= − 1

vol(G)

√
w1w2

∑
i∈U1

xU1(i)
∑
j∈U2

xU2(j) = −
√
w1w2

vol(G)
,

where the second equality is due to fact that U1∩U2 = ∅. This demonstrates that 〈Σ̂
+
xU1 ,p−

q〉 = 0 for any p, q ∈ Ŝ[U2], completing the proof. �

Lemma 3.20. Suppose U1 ⊆ V (G) is not degree homogeneous. Then for all U2 ⊆ V (G) the
faces Ŝ[U1] (resp., Ŝ+[U1]) and Ŝ+[U2] (resp., Ŝ[U2]) are not orthogonal.

Proof. We show that Ŝ[U1] and Ŝ+[U2] are not orthogonal; the other case is nearly identical.
Let i, j ∈ U1 be such that w(i) 6= w(j) and consider the points p = Σ̂χi, q = Σ̂χj ∈ Ŝ[U1].

For any Σ̂
+
x ∈ Ŝ+[U2], performing the usual arithmetic yields

〈Σ̂
+
x,p− q〉 =

1

vol(G)

∑
k∈U2

√
w(k)x(k)(

√
w(j)−

√
w(j)) 6= 0. �

We state a consequence of Lemmas 3.19 and 3.20 which exemplifies a clear contrast
between the combinatorial simplices and the normalized simplices.

Corollary 3.2. The vertex σ̂+
i (resp., σ̂i) is orthogonal to Ŝ{i}c (resp., Ŝ+

{i}c) iff G[{i}c] =

G[V \ {i}] is regular.

Proof. If G[{i}c] is regular then {i}c is weight homogenous. By Lemma 3.19 Ŝ[{i}] = σ̂i
(resp., Ŝ+[{i}] = σ̂+

i ) is orthogonal to Ŝ[{i}c] (resp., Ŝ+[{i}c]). (Note that the singleton {i}
is clearly degree homogeneous.) Conversely, if G[{i}c] is not regular then by Lemma 3.20 σ̂i
(resp., σ̂+

i ) is not orthogonal to Ŝ[{i}c] (resp., Ŝ+[{i}c]). �
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Centroids and altitudes. Let us attempt to parallel the arguments given in Section 3.4
concerning the centroids and altitudes of SG and S+

G . Let U ⊆ V . For the normalized
Laplacian we have

L̂(χU ) =
∑
i∼j

w(i, j)

(
χU (i)√
w(i)

− χU (j)√
w(j)

)2

=
∑
i,j∈U

w(i, j)

(
1√
w(i)

− 1√
w(j)

)2

+
∑

i∈U,j∈Uc
w(i, j)

(
χU (i)√
w(i)

)2

=
∑
i,j∈U

w(i, j)

w(i)w(j)
(
√
w(i)−

√
w(j))2 +

∑
i∈U,j∈Uc

w(i, j)

w(i)

=
∑
i∈U

1

w(i)

{∑
j∈U

w(i, j)

w(j)
(
√
w(i)−

√
w(j))2 +

∑
j∈Uc

w(i, j)

}
. (3.17)

Admittedly, this lends itself much less easily to interpretation than in the case of the combi-
natorial simplex. However, we will see in Chapter 5 that when U is an independent set this
formula has a more elegant form.

Alternate descriptions and duals. As we did for the combinatorial simplices, we now
try to formulate a hyperplane representation of the normalized simplices. As the reader will
see, however, this is difficult due to the influence of the graph weights on their geometry.
We begin with a lemma which is roughly the equivalent of Lemma 3.10 for the normalized
simplex.

Lemma 3.21. Let U ⊆ V be non-empty and F ⊆ U c. Setting

βSi =
√
w(i)

maxj∈S
√
w(j)

vol(G)
,

for any set S, we have

ŜU ⊆ Ĥ≥F
def
=

{
x ∈ Rn−1 :

∑
i∈F

(〈x, σ̂+
i 〉+ βF

c

i ) ≥ 0

}
.

Similarly,

Ŝ+
U ⊆ (Ĥ+

F )≥
def
=

{
x ∈ Rn−1 :

∑
i∈F

(〈x, σ̂i〉+ βF
c

i ) ≥ 0

}
.

Proof. Let x = Σ̂y ∈ ŜU , where y is a barycentric coordinate with y(U c) = 0. For i ∈ U c,

〈Σ̂y, σ̂+
i 〉 = ytΣ̂

t
Σ̂

+
χi = yt

(
I−
√
w
√
w
t

vol(G)

)
χi = − 1

vol(G)

∑
j∈U

y(j)
√
w(j)

√w(i).
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(a)
(b)

Figure 3.3: An illustration of the fact that, in general, Ŝ{i}c is not contained in Ĥi = {x :

〈x, σ̂+
i 〉+ βi = 0}.

Since ‖y‖1 = 1, and F c ⊇ U (since F ⊆ U c) it follows that∑
j∈U

y(i)
√
w(j) ≤ max

j∈U

√
w(j) ≤ max

j∈F c

√
w(j),

hence

〈Σ̂y, σ̂+
i 〉 ≥ −

√
w(i)

vol(G)
max
j∈F c

√
w(j) = −βF ci .

Consequently,
∑

i∈F (〈x, σ̂+
i 〉 + βFci ) ≥

∑
i∈F c(−βF

c

i + βF
c

i ) = 0, so indeed x ∈ ĤF . The

proof for the Ŝ+
G and Ĥ+

F is almost identical. �

We might expect that Lemma 3.21 yields a hyperplane representation of the normalized
simplex, as did Lemma 3.10 for the combinatorial simplex. Unfortunately however, the issue

is once again complicated by the vertex weights and the relation between Σ̂
+

and Σ̂. Let us
illustrate the problem by focusing on Ŝ.

As opposed to Section 3.4, Ŝ{i}c is not contained in the hyperplane Ĥi = {x : 〈x, σ̂+
i 〉+

βi = 0}, where we take βi = β
{i}c
i =

√
w(i) maxj 6=i

√
w(j)/vol(G). To see this, take any

k /∈ argmaxj 6=i
√
w(j) (such a k exists iff the graph is not regular) and note that while

σk ∈ ŜU it is not in Ĥi:

〈σ̂k,σ+
i 〉 = χkΣ̂

t
Σ̂

+
χi = −

√
w(k)w(i)

vol(G)
6= βi,

by assumption. The other way to see this is to note that σ̂+
i is not perpendicular to Ŝ{i}c in

general by Corollary 3.2. Thus, it is not clear how to generate an analogous description to
Equation (3.6) for the normalized simplex. While this may seem relatively inconsequential,
it severely complicates finding the dual of ŜG, which is the question we turn to next.
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What is Ŝ∗G and and (Ŝ+
G )∗? Given that Ŝ+

G is not the dual of ŜG in general, it seems
appropriate to ask “what on earth is the dual of the normalized simplex?”. The question has
an interesting implicit answer when asked of Ŝ+

G , as demonstrated by the following lemma.

Lemma 3.22. For any graph G, there exists a graph H such that the dual of Ŝ+
G is the

combinatorial simplex of H.

Proof. Using the same reasoning which was applied to S+
G , we see that Ŝ+

G is also hyperacute.
This implies, by Theorem 3.1, that its centred version is the inverse combinatorial simplex
of some graph H. That is, (Ŝ+

G )0 = S+
H . Since all translationally congruent simplices share

the same dual, we have
(Ŝ+
G )∗ = (Ŝ+

G )∗0 = (S+
H)∗ = SH . �

Unfortunately, this result is purely existential and does not yield much insight as to actual
structure of (Ŝ+

G )∗. In the case of ŜG, somewhat surprisingly, the question is intimately

related to the hyperplane representation—or lack thereof—of ŜG. We can obtain an implicit
representation for the dual vertices {σ̂∗i } by noting that they must satisfy 〈σ̂∗i , σ̂j− σ̂n〉 = δij
for all i, j 6= n. This translates to

n∑
`=1

σ̂∗i (`)(ϕ̂k(j)− ϕ̂k(n))λ̂
1/2
k = δij ,

but extracting values of σ̂∗i which meet this condition is not trivial. We might, however, try
a different tactic. Note that in the case of the combinatorial simplices, the dual vertices are
encoded in their hyperplane representation by Equation (3.6): SG =

⋂
i{x : 〈x,σ+

i 〉 ≥ −1/n}.
It is thus natural to wonder whether this relationship holds for every simplex, that is, if given
a simplex described as the intersection of halfspaces, say T =

⋂
i{x : 〈zi,x〉 ≥ bi} are

the vectors zi are parallel to the dual vertices of T . The following lemma gives sufficient
conditions as to when this is the case.

Lemma 3.23. Let T ⊆ Rn−1 be a centred simplex with T =
⋂n
i=1{x ∈ Rn−1 : 〈x, zi〉 ≥ αi}.

Then {−zi/(αin)} are the vertices of T ∗.

Proof. As usual, let {σi} be the vertices of T . Put γi = −zi/(αin). We need to show
that {γi}n−1

i=1 is the sister basis to {σi − σn}n−1
i=1 . Let Hi be the boundary of the halfspace

{x : 〈x, zi〉 ≥ αi}, so Hi = {x : 〈x, zi〉 = αi}. Enumerate the vertices {σi} such that
S{i}c ⊆ Hi. Fix i ∈ [n− 1]. We claim that

σi ∈
⋂
j 6=i

Hi.

Indeed, S{j}c is the n − 1 dimensional simplex with vertices {σ`}` 6=j . Hence σi ∈ S{j}c for
all j 6= i and thus also lies in ∩j 6=iHj . Therefore, 〈σi, zj〉 = αj for all j 6= i, from which it
follows that 〈γj ,σi − σn〉 = −〈zj ,σi〉/(αjn) + 〈zj ,σn〉/(αjn) = 1/n − 1/n = 0. It remains
to show that 〈γi,σi − σn〉 = 1 for all i 6= n. Since T is centred by assumption, we have
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σi = −
∑

j 6=i σj . Consequently,

〈γi,σi − σn〉 = −
∑
j 6=i
〈γi,σj〉 − 〈γi,σn〉 =

1

n
(n− 1) +

1

n
= 1,

as was to be shown. �

Lemma 3.23 allows us to extract the dual given a hyperplane description of a centred
simplex. The next natural question is then how the hyperplane description of an arbitrary
simplex relates to the hyperplane description of its centred counterpart. This is answered by
the following lemma.

Lemma 3.24. Let T = ∩i{x : 〈x, zi〉 ≥ αi} be a simplex. Its centred version, T0, can be
written as ∩i{x : 〈x, zi〉 ≥ αi − 〈c(T ), zi〉}.

Proof. As usual, take Hi = {x : 〈x, zi〉 = αi} to be the hyperplanes bounding the simplex.
The hyperplanes bounding the centred simplex, are parallel to the hyperplanes Hi and can
thus be written as

Hi0 = {x : 〈x, zi〉 = βi},

for some βi. Moreover, just as σj ∈ Hi for j 6= i, we have σj−c(T ) ∈ Hi0, since {σj−c(T )}
are the vertices of T0. As such, 〈σj − c(T ), zi〉 = βi, and

〈σj − c(T ), zi〉 = 〈σj , zi〉 − 〈c(T ), zi〉 = αi − 〈c(T ), zi〉,

whence βi = αi − 〈c(T ), zi〉. It then follows that

T0 =
⋂
i

H≥i0,

where H≥i0 = {x : 〈x, zi〉 ≥ αi − 〈c(T ), zi〉}. �

Taken together, Lemmas 3.23 and 3.24 provide a path to try and determine the dual
simplex of ŜG. In particular, if we could determine a hyperplane representation of any simplex
congruent to ŜG, then we can obtain a hyperplane representation of its centred version by
Lemma 3.24 and to the dual of its centred version by Lemma 3.23. Since the dual is common
to all congruent simplices by Observation 2.3, this would yield S∗G. Unfortunately, obtaining
such a representation is not trivial. We leave the question as an open problem.
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Chapter 4

Further Properties of the Correspondence

Everything is funny, if you can laugh at it.

— Lewis Carroll

The previous chapter introduced the graph-simplex correspondence and devoted several
sections to the basic properties of the simplices associated to a given graph. In this chapter
we continue the study of the correspondence and present several of its more significant (but
perhaps more complicated) properties. We begin, however, by demonstrating that some of
the interplay between SG and S+

G generalizes to an arbitrary simplex and its dual.

§4.1. A General Property of the Dual Simplex

Given that S+
G is the dual of SG, it is natural to wonder whether some aspects of their

relationship are common to that between any simplex and its dual. Here we demonstrate
that this is indeed the case; in particular, the Gram matrix of any (centred) simplex and
its dual enjoy the same pseudoinverse relationship. As we explained in Section 3.5, this
relationship is crucial to many of the proofs pertaining to the combinatorial simplices. That
an equivalent property holds for arbitrary simplices is therefore highly beneficial for their
study.

Lemma 4.1. Let T ⊆ Rn−1 be an arbitrary centred simplex, and T ∗ its dual. Put Σ =
Σ(T ) = (γi) and Σ∗ = Σ(T ) = (γ∗i ) as usual. Then Σ∗Σt = Σ(Σ∗)t = I and (Σ∗)tΣ∗ is
the Moore-Penrose pseudoinverse of ΣtΣ.

Proof. First we inquire into the relationship between Σ and Σ∗. Put M = (γi − γn),
i ∈ [n − 1], and Q = (γ∗1, . . . ,γ

∗
n−1). By definition, {γ∗i } is the dual basis to {γi − γn}.

Thus, by Observation 2.1, Qt = M−1 (we are working in Rn−1), so MQt = I. The (i, j)-th
component of this matrix product can therefore be expressed as

δij = MQt(i, j) =
n−1∑
`=1

(γ`(i)− γn(i))γ∗` (j) =
n−1∑
`=1

γ`(i)γ
∗
` (j)− γn(i)

n−1∑
`=1

γ∗` (j). (4.1)
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Now, since T ∗ is centred,

0 = (Σ∗1)(j) =
∑
`∈[n]

γ∗` (j),

implying that
∑n−1

`=1 γ
∗
` (j) = −γ∗n(j). Equation (4.1) can then be written

∑n
`=1 γ`(i)γ

∗
` (j) =

δij , implying that the components of Σ∗Σt are

(Σ∗Σt)(i, j) =
n∑
`=1

γ∗` (i)γ`(j) = δij ,

so that Σ∗Σt = I. A similar argument holds for Σ(Σ∗)t, mutatis mutandis.

We now proceed to demonstrating the pseudoinverse relation between ΣtΣ and (Σ∗)tΣ∗.
Recall that to demonstrate that a matrixB1 is the pseudoinverse ofB2, we need to show that
(i) B1B2B1 = B1, (ii) B2B1B2 = B2, (iii) (B1B2)t = B1B2 and (iv) (B2B1)t = B2B1

(Definition 2.4). Using the relationship between Σ∗ and Σ given above, these become simple
computations. For instance,

ΣtΣ(Σ∗)tΣ∗ΣtΣ = ΣtI2Σ = ΣtΣ,

and,

((Σ∗)tΣ∗ΣtΣ)t = ((Σ∗)tIΣ)t = ΣtΣ∗ = I− J

n
= (Σ∗)tΣ = (Σ∗)tIΣ = (Σ∗)tΣ∗ΣtΣ.

Conditions (i) and (iii) therefore hold between ΣtΣ and (Σ∗)tΣ∗; conditions (ii) and (iv)
follow similarly. �

In the next section, we will demonstrate that this insight allows us to generalize results
pertaining to hyperacute simplices to all simplices. We thus witness another benefit of the
correspondence: By leveraging knowledge of SG and S+

G we can gain insights into the be-
haviour of general simplices.

§4.2. Block Matrix Equations

In this section we are finally able to satisfy those readers who have wondered about the appli-
cability of electrical networks to the graph-simplex correspondence. Applying Lemma 2.8, we
are able to develop block matrix equations which relate the structure of SG and S+

G . Then,
using the results of the previous section we generalize these equations to arbitrary simplices.

Before we begin, a brief remark on the relationship of the following results and Fiedler’s
work. Fiedler’s derivation of the graph-simplex correspondence relied on a matrix equation—
an equation equivalent to (4.4), in fact [Fie93, Theorem 3.1]. Conversely, we are obtaining
such equations as a consequence of the correspondence. It is our hope that different treatments
of the material shed light on its different—and hopefully complementary—implications.

Let a centred, hyperacute simplex T be given, with Σ(T ) = {γi}. Let d̄ be the average
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squared distance between all the vertices of T , that is

d̄
def
=

1

n2

∑
i≤j

∥∥γi − γj∥∥2

2
. (4.2)

Let ξ(i) give the average squared distance of vertex i from other vertices minus the total
average distance,

ξ(i)
def
=

1

n

∑
j

∥∥γi − γj∥∥2

2
− d̄, (4.3)

and put ξ = (ξ(1), . . . , ξ(n)). The following results relate the distance matrix of T to the
vertex matrix of its dual.

Lemma 4.2. Let T ⊆ Rn−1 be a hyperacute simplex with squared distance matrix DT , and
average squared distance vector ξ. Let Q = (Σ∗)tΣ∗ where Σ∗ is the vertex matrix of T ∗.
Then,

− 1

2

(
0 1tn
1n DT

)
=

(
ξtQξ + 4d −(Qξ + 21/n)t

−(Qξ + 21/n) Q

)−1

. (4.4)

Moreover, the vertices of T ∗ and the distance matrix of T are related by the equation

QDTQ = −2Q, (4.5)

and in the space span(1)⊥ it holds that

DTQDT = −2DT .

Proof. By Theorem 3.1, T is the inverse simplex of some graph G and therefore D = DT =
R, where R is the effective resistance matrix (Lemma 3.5). Therefore, we can rewrite ξ(i) as

1

n

∑
j

reff(i, j)− 1

n2

∑
i<j

reff(i, j),

whence,

ξ =
1

n
R1− 1

n2
11tR1 =

1

n
R1− 1

n2
JR1.

Meanwhile, the dual simplex to T is the simplex of the graph G, and hence obeys Q = LG.
Consequently, letting ∆ = 1

nR1− 1
n2 JR1, we can rewrite Equation (4.4) as the purely graph

theoretic statement

−1

2

(
0 1tn
1n R

)
=

(
∆tLG∆ + 4

n2R
tot
G −(LG∆ + 2

n1)t

−(LG∆ + 2
n1) LG

)−1

.

This equation is verified by Lemma 2.8. The final two equations in the lemma translate
to LGRGLG = −2LG and RGLGRG = −2RG on span(1)⊥. Both of these also hold via
Lemma 2.8. �
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While Lemma 4.2 may be interesting, it is unfortunately restricted in its scope. In what
follows we demonstrate that it can be generalized to hold for all simplices. Before we begin,
we require a generalization of the statement R = ∆1t + 1∆t − 2L+

G to all distance matrices
(recall that R is the distance matrix of S+

G ). This is accomplished by the following lemma.

Lemma 4.3. For any centred simplex T ⊆ Rn−1 with distance matrix DT and vertex matrix
Σ, it holds that DT = 1ξt + ξ1t − 2ΣtΣ.

Proof. Fix k, ` ∈ [n]. The proof is purely computational. We have

(ξ1t)(k, `) =
1

n

∑
j

∥∥γk − γj∥∥2

2
− d̄, (1ξt)(k, `) =

1

n

∑
j

∥∥γ` − γj∥∥2

2
− d̄,

and −2ΣtΣ = −2〈γk,γ`〉. Expanding the norm in terms of dot products, write

(ξ1t + 1ξt − 2ΣtΣ)(k, `) =
1

n

(∑
j

∥∥γk − γj∥∥2

2
+
∑
j

∥∥γ` − γj∥∥2

2

)
− 2

n2

∑
i<j

∥∥γi − γj∥∥2

2
− 2〈γk,γ`〉

=
1

n

∑
j

(
‖γk‖

2
2 +

∥∥γj∥∥2

2
+ ‖γ`‖

2
2 +

∥∥γj∥∥2

2
− 2〈γk,γj〉 − 2〈γ`,γj〉

)
− 1

n2

∑
i,j

(
‖γi‖

2
2 +

∥∥γj∥∥2

2
− 2〈γi,γj〉

)
− 2〈γk,γ`〉.

= ‖γk‖
2
2 + ‖γ`‖

2
2 − 2〈γk,γ`〉+ 2

(
1

n

∑
j

∥∥γj∥∥2

2
− 1

n2

∑
i,j

∥∥γj∥∥2

2

)
+

1

n2

∑
i,j

〈γi,γj〉 −
2

n

∑
j

(〈γk,γj〉 − γ`,γj〉).

Note that in the second line we removed the factor of two from d̄ by summing over all i, j
rather than simply i < j. Now, the first three terms in the final equation are equal to
‖γk − γ`‖

2
2 = DT (k, `). Therefore, it remains to show that the final three terms are zero.

The first of these, 1
n

∑
j

∥∥γj∥∥2

2
− 1

n2

∑
i,j

∥∥γj∥∥2

2
, is clearly zero after noticing that the final

summand is independent of i. As for the final two, we write them in terms of the centroid of
T (which is 0), as

1

n2

∑
i,j

〈γi,γj〉 −
2

n

∑
j

(〈γk,γj〉 − γ`,γj〉)

=
1

n2

〈∑
i

γi,
∑
j

γj

〉
− 2

n

(〈
γk,
∑
j

γj

〉
−
〈
γ`,
∑
j

γj

〉)
=

1

n2
〈nc(T ), nc(T )〉 − 2

n
(〈γk, nc(T )〉 − 〈γ`, nc(T )〉

= 0,
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as was to be shown. �

We can now strengthen Lemma 4.2 to all simplices, even those which are not centred.

Theorem 4.1. The equations of Lemma 4.2 hold for any simplex T ⊆ Rn−1.

Proof. Let us first assume that T is centred. The proof proceeds very much as does that of
Lemma 2.8, by computing the matrix product(

0 1t

1 DT

)(
ξtQξ + 4d̄ −(Qξ + 2

n1)t

−(Qξ + 2
n1) Q

)
,

and demonstrating that it equals −2I. Instead of leveraging the relationship RG = 1∆t +
∆1t−2L+

G as was done in that case, we use the more general equationDT = 1ξt+ξ1t−2ΣtΣ
given by Lemma 4.3. However, since that proof was given in the appendix we will give this
one here. The top left corner of the product of these two matrices is −1tQξ − 2/n1t1 = −2
as 1tQ = 1t(Σ∗)tΣ∗ since T ∗ is centred by definition. Likewise, the top right hand corner is
zero. After expanding DT in accordance with Lemma 4.3 the bottom left corner becomes

1ξtQξ + 4d̄1− (1ξt + ξ1t − 2ΣtΣ)Qξ − 2

n
DT 1 = 4d̄1 + 2ΣtΣQξ − 2

n
DT 1. (4.6)

Lemma 4.1 dictates that Q is the pseudoinverse of ΣtΣ so, by Lemma 2.4, ΣtΣQ = I−J/n
(of course, we’re implicitly using that span(1)⊥ = ker(Σ) = ker(ΣtΣ)). Moreover, after
noting that

ξ =
1

n
DT 1− d̄1, and d̄ =

1

2n2
1tD1,

we can rewrite the right hand side of Equation (4.6) as

4d̄1 + 2

(
I− J

n

)(
1

n
DT 1− d̄1

)
− 2

n
DT 1

= 2d̄1− 2

n2
JDT 1 +

2

n
Jd̄1

=
1

n2
JDT 1− 2

n2
JDT 1 +

1

n3
J2DT 1

=
1

n2
JDT 1− 2

n2
JDT 1 +

1

n2
JDT 1 = 0.

Carrying out a similar procedure for the bottom right corner, we obtain

−1ξtQ− 2

n
J +DTQ = −1ξtQ− 2

n
J + (1ξt + ξ1t − 2ΣtΣ)Q

= − 2

n
J− 2

(
I− J

n

)
= −2I.

The final two equations follow via similar computations:

QDTQ = Q(1ξt + ξ1t − 2ΣtΣ)Q = −2QΣtΣQ = −2Q,
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due to properties of the pseudoinverse (Definition 2.1), and if x ⊥ 1 then

DTQDT x = DTQ(1ξt + ξ1t − 2ΣtΣ)x = −2DTQΣtΣx = −2DT

(
I− J

n

)
x = −2DT ,

which completes the proof if T is centred. If T is not centred, then we need only apply the
relationship to its centred version T0, and note that the quantitiesDT , ξ, d̄ andQ are the same
for T0 and T . The first three are the same because they deal with distances between vertices,
which are invariant under linear transformations. Q is the same due to Observation 2.3. �

Remark 4.1. We have thus recovered Fiedler’s block matrix relation [Fie93], although he
does not give the same explicit interpretation of the entries as we do. As discussed above,
it is interesting that Fiedler used the equation as the basis for the correspondence while our
approach is the reverse.

4.2.1. Applications

We now discuss several uses of the equations developed above. One consequence is a relation
between the volume of the simplex and the effective resistances in the graph. To see this, we
need to introduce a particular object from the field of distance geometry. Let D(X ) be the
distance matrix of a set X of d points. The matrix(

0 1t

1 D(X )

)
∈ R(d+1)×(d+1), (4.7)

is called the Menger matrix of X, the determinant of which is called the Cayley-Menger
determinant, named after Arthur Cayley and Karl Menger [Cay41, Men28]. The Cayley-
Menger determinant is related to the volume of the underlying set of points as follows.

Lemma 4.4 ([Men31]). Let D(X ) be the distance matrix of a set X of d points. The squared
d− 1 dimensional volume1 of the convex hull of X is proportional to the determinant of the
Menger matrix:

vol2(conv(X )) =
(−1)d

((d− 1)!)22d−1
det

(
0 1t

1 D(X )

)
. (4.8)

The relation between the Menger matrix and the volume combined with the matrix equa-
tions above allows us to give a concise formula for the volume of any hyperacute simplex.
This fact was first pointed out by Van Mieghem et al. [VMDC17].

Lemma 4.5. Let S+ ⊆ Rn−1 be the inverse combinatorial simplex of G. The n−1 dimensional
volume of S+ is

vol(S+) =
1

(n− 1)! · Γ1/2
G

, (4.9)

where ΓG is the total weight of all spanning trees of G.

1That is, the volume as calculated in Rd−1.
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We remind the reader that ΓG was discussed in Section 2.3.1; see Equation (2.16) in
particular. The proof of Lemma 4.5 may be found in Appendix A.3.

We can use these results to produce an equation relating the diagonal entries of the
Laplacian to the volume of S+

G and its facets.

Lemma 4.6. Let G be a connected graph and fix i ∈ V (G). Put G{i}c = G[V \ {i}]. If

S+ ⊆ Rn−1 is the inverse combinatorial simplex of G then the volumes of S+
{i}c and S+ are

related as
vol2(S+

{i}c)

vol2(S+)
= (n− 1)2LG(i, i) = (n− 1)2w(i). (4.10)

Proof. Let S+ have vertices σ+
1 , . . . ,σ

+
n , and let M be the Menger matrix associated with

S+. Sylvester’s formula (Lemma 2.3) gives us that

M−1(i+ 1, i+ 1) = detM−1(i+ 1, i+ 1) = ±detM(U,U)

detM
,

where U = {i+1}c. Observe that M(U,U) is the Menger matrix of the simplex S+
{i}c ; we are

simply removing the row and column corresponding to the i-th vertex. Translating the de-
terminants of Menger matrices into statements about volumes of simplices via Equation (4.9)
gives

M−1(i+ 1, i+ 1) = ± [(n− 2)!]22n−2

(−1)n−1
vol2(S+

{i}c)

/
[(n− 1)!]22n−1

(−1)n
vol2(S+)

= ∓ 1

2(n− 1)2

vol2(S+
{i}c)

vol2(S+)
.

Via the block matrix equation (2.18) we have M−1(i + 1, i + 1) = −1
2LG(i, i) (since the

distance matrix of S+ is the effective resistance matrix of G). Plugging this into the above
equation and noting that both LG(i, i) and vol2(S+

{i}c)/(2(n− 1)2vol2(S+)) are positive gives
the desired result. �

Remark 4.2. The facet S+
{i}c is distinct from the inverse combinatorial simplex of the graph

G{i}c . However, if one could relate their volumes then this would yield an equation for LG(i, i)
in terms of the spanning trees of G and G{i}c by combining Lemma 4.5 and Equation (4.10).

Given that Lemma 4.5 uses the block matrix equation for hyperacute simplices, it is
natural to wonder whether we can generalize the result by appealing instead to generalized
matrix equation which holds for all simplices (Theorem 4.1). We can in fact, but first we
need to prove several results concerning the Gram matrix of a general dual simplex. We
begin with two technical lemmas which will later prove useful.

Lemma 4.7. For any simplex T ⊆ Rn−1, let Q = Σ(T ∗)tΣ(T ∗) be the Gram matrix of the
dual simplex. The volume of T is related to the cofactors of Q as

vol2(T ) =
4

[(n− 1)!]2

(∑
i∈[n]

∑
j∈[n]

r(i)r(j)(−1)i+j det
(
Q−i,−j

))−1

,
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where r = −Qξ − 2
n1.

Proof. The statement is essentially extracted from the proof of Lemma 4.5, so we do not
reformulate it here. We do note, however, that this lemma makes use of the block matrix
equation for general simplices, whereas the proof of Lemma 4.5 relies only on Lemma 4.2. �

The following second technical lemma will help with our eventual aim of demonstrating
that all cofactors of a Gram matrix (of a centred simplex) are constant. The previous lemma
will then enable us to relate this value to the volume.

Lemma 4.8. Let M ∈ Rn×n have real eigenvalues µ1, . . . , µn. Then

n∑
i=1

∏
j 6=i

µi =
n∑
i=1

det(M−i,−j). (4.11)

Proof. We make use of technique used by Godsil and Royle [GR13] to prove Kirchoff’s matrix
tree theorem. ForM ′ andM ′′ square, it holds that det(M ′ +M ′′) =

∑
U⊆[n] detM ′

U , where

M ′
U is the matrix obtained by replacing row i in M ′ with row i of M ′′ for all i ∈ U . We

will apply this to the sum tI −M . Fix U ⊆ [n] and let us consider det(tI)U for a moment.
Letting Sn denote the set of all permutations on n vertices, recall that the determinant obeys

det((tI)U ) =
∑
τ∈Sn

sgn(τ)
∏
i∈[n]

(tI)U (i, τ(i)),

where sgn(τ) is the sign of the permutation. Now, for i /∈ U , the i-th row of tI is tei, so
(tI)U (i, τ(i)) = tδi,τ(i). Consequently, we can restrict our attention to those permutations
which fix each i /∈ U :

det((tI)U ) =
∑
τ∈Sn

τ(i)=i,i∈Uc

sgn(τ)
∏
j∈U

(tI)U (j, τ(j))
∏
i/∈U

(tI)U (i, τ(i))

=
∑
τ∈Sn

τ(i)=i,i∈Uc

sgn(τ)

(∏
j∈U

(tI)U (j, τ(j))

)
tn−|U |

= tn−|U |
∑
τ∈SU

sgn(τ)
∏
j∈U

(−M)(j, τ(j))

= tn−|U | det(−M(U,U)),

where we recall that M(U,U) denotes the submatrix of M indexed by the rows and columns
of U . It is worth remarking that the penultimate inequality follows because the set of all
permutations in Sn which fix the elements of U c (i.e., do not change their positions) is in
one-to-one correspondence with the set of all permutations on U . The final equality then
uses the definition of the determinant. Returning to the characteristic polynomial, and noting
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that det(−M(U,U)) = (−1)|U | det(M(U,U)) write

det(tI−M) =
∑
U⊆[n]

det((tI)U ) =
∑
U⊆[n]

tn−|U |(−1)|U | det(M(U,U))

=
n∑
k=1

∑
U⊆[n],|U |=k

tn−k(−1)k det(M(U,U)). (4.12)

On the other hand, we can of course write the characteristic polynomial in terms of the
eigenvalues of M [Bro06]:

det(tI−M) =
n∑
k=0

(−1)n−k
( ∑
U⊆[n],|U |=k

∏
i∈U

µi

)
tn−k. (4.13)

Matching the coefficients of the term involving t in Expressions (4.12) and (4.13) gives

(−1)n−1
∑

U⊆[n],|U |=n−1

∏
i∈U

µi = (−1)n−1
∑

U⊆[n],|U |=n−1

det(M(U,U))

= (−1)n−1
n∑
i=1

det(M−i,−i),

which is equivalent to the desired expression. �

We are now almost ready to prove that all cofactors of Gram matrices of dual simplices
are equal. We require one final tool, however. Let M ∈ Rn×n. The adjugate of M , denoted
by adj(M), is the matrix whose (i, j)-th entry is equal to the (j, i)-th cofactor of M , i.e.,

adj(M)(i, j) = (−1)i+j det(M−i,−j),

where M−i,−j ∈ R(n−1)×(n−1) is the matrix obtained by removing the i-th row and column
of M . The adjugate obeys the following equation (see e.g., [GR13])

M adj(M) = det(M)I. (4.14)

Lemma 4.9. Let Γ be the vertex matrix of n affinely independent points in Rn−1 whose
centroid is 0, i.e., Γ1 = 0. Then (i) the cofactors of the Gram matrix Q = ΓtΓ are all
equal to some number κ(Q) and (ii)

∏
i<n µi = n · κ(Q) where µ1, . . . , µn−1 are the non-zero

eigenvalues of Q.

Proof. Note that detQ = 0 since 1 ∈ kerQ. Hence, using Equation (4.14), Q adjQ =
det(Q)I = 0n×n. Each column of adjQ is thus in kerQ = ker Γ = span(1) (here we’re using
both Lemma 2.2 and the fact that dim ker Γ = 1 due to affine independence). Therefore,
adjQ = (α11, α21, . . . , αn1) for some αi ∈ R. However, since Q is symmetric, Q−i,−j =
Q−j,−i for each i, j ∈ [n], implying that adjQ = (adjQ)t. This in turn implies that αi = αj
for all i, j, meaning that adjQ is a constant matrix equal to, say, κ(Q)J. This proves (i).
(ii) now follows from applying Lemma 4.8 along with the fact that since Q has rank n − 1,
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it has n− 1 non-zero eigenvalues. Hence, if µn is the single zero eigenvalue,

∏
j<n

µj =
n∑
i=1

∏
j 6=i

µi =
∑
i

det
(
Q−i,−i

)
= nκ(Q). �

Finally, we can extract a general theorem about the volume of arbitrary simplices.

Theorem 4.2. For any simplex T ⊆ Rn−1,

vol(T ) =

√
n

(n− 1)!

∏
i<n

1

µ
1/2
i

,

where µ1, . . . , µn−1 are the non-zero eigenvalues of the matrix Q = Σ(T ∗)tΣ(T ), the Gram
matrix of the dual simplex.

Proof. As per Lemma 4.9, let the cofactors of Q be equal to κ(Q). Take r = −Qξ − 2
n1 as

usual. Combining Lemmas 4.7 and 4.8 gives

vol2(T ) =
4

[(n− 1)!]2

(
κ(Q)

∑
i,j∈[n]

r(i)r(j)

)−1

=
4

[(n− 1)!]2κ(Q)
(〈r,1〉2)−1 =

n

[(n− 1)!]2
∏
i<n µi

,

where we’ve written κ(Q) in terms of the eigenvalues by Lemma 4.9 and used that 〈r,1〉 =
−2. �

As an immediate consequence of this theorem, we obtain the volume of the combinatorial
simplex of a graph. Our result matches that obtained by Van Mieghem et al. [VMDC17],
but is gleaned in a different manner.

Corollary 4.1. For a connected graph G,

vol(SG) =

√
n

(n− 1)!

∏
i<n

λ
1/2
i =

n · Γ1/2
G

(n− 1)!

where λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0 are the eigenvalues of LG.

Proof. The Gram matrix of the dual simplex of SG is L+
G, which has eigenvalues λ−1

i . Apply
Theorem 4.2. The second inequality follows from applying the matrix tree theorem. �

Another consequence relates the volumes of the combinatorial simplices to the weight of
all spanning trees of G.

Corollary 4.2. The ratio of G’s combinatorial simplices obeys

vol(SG)

vol(S+
G )

= nΓG.
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Proof. We have vol(SG) =
√
n

(n−1)!

∏
i<n λ

1/2
i and vol(S+

G ) =
√
n

(n−1)!

∏
i<n λ

−1/2
i . Take the ratio

and recall that ΓG =
∏
i<n λi. �

Unfortunately, it is difficult to garner similar insights regarding the normalized simplices.
Indeed, because we do not know what the duals of the normalized simplices are in general, we
cannot relate their volumes to the eigenvalues of L̂G. We can however, relate the eigenvalues
of L̂G to the volumes of SG and S+

G . To do this, we first need to make a detour to study the
adjugate the normalized Laplacian.

It is well-known that the adjugate is commutative with matrix multiplication [GR13]:
adj(MQ) = adj(M) adj(Q) for any M and Q. Applying this to L̂ (we drop the subscript),
we have

adj(L̂) = adj(W−1/2LGW
−1/2)

= adj(W−1/2) adj(LG) adj(W−1/2)

= ΓG · adj(W−1/2) J adj(W−1/2),

where we’ve used that each cofactor of LG is equal to ΓG by Theorem 2.2. Using Equa-
tion (4.14) to compute adj(W−1/2) yields

adj(W−1/2) = W 1/2 det
(
W−1/2

)
I =

(∏
i

w(i)−1/2

)
W 1/2,

therefore,

adj(L̂) = ΓG

(∏
i

w(i)−1/2

)2

W 1/2JW 1/2 = ΓG

(∏
i

1

w(i)

)√
w
√
w
t
. (4.15)

From the above we gather that each cofactor of L̂ is not constant. This can, however, be
remedied by weighting each cofactor judiciously:

Lemma 4.10. For each i, j ∈ [n], (−1)i+j det
(
L̂−i,−j

)
)(w(i)w(j))−1/2 is independent of i

and j and equal to the constant κ(L̂) = ΓG
∏
k 1/w(k).

Proof. Equation (4.15) implies that

(−1)i+j det(L−i,−j) = adj(L̂)(j, i) = ΓG

(∏
k

1

w(k)

)
(w(i)w(j))1/2.

Rearranging gives the result. �

This allows us to relate the eigenvalues of L̂ to those of LG, and consequently to the
volume of SG and S+

G as follows.
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Lemma 4.11. If λ̂1 ≥ · · · ≥ λn−1 > λ̂0 are the eigenvalues of L̂G, then∏
i<n

λ̂i = ΓG

(∏
j

1

w(j)

)
vol(G) =

vol(SG)

nvol(S+
G )

(∏
j

1

w(j)

)
vol(G). (4.16)

Proof. We apply Lemma 4.8. Observe that the only non-zero product of n− 1 eigenvalues is∏
i<n λ̂i since λ̂n = 0. Applying Lemma 4.10 to Equation (4.11) yields∏

i<n

λ̂i =
∑
i∈[n]

det
(
L̂−i,−i

)
=
∑
i∈[n]

(−1)i+i det
(
L̂−i,−i

)
w(i) · w(i)−1

= κ(L̂)
∑
i∈[n]

w(i) = ΓG vol(G)
∏
k

1

w(k)
.

This proves the first equality. The second follows from writing ΓG in terms of the volumes
of the combinatorial simplices as per Corollary 4.2. �

Finally, we remark that the previous lemma provides an explicit relationship between
the eigenvalues of L̂G and those of LG. Indeed, combining Kirchoff’s matrix tree theorem—
Theorem 2.2—with Equation (4.16) gives∏

i<n

λ̂iλi =
vol(G)

n

∏
j∈[n]

1

w(j)
.

We now turn to investigating the relationships between the volumes of the facets of a
simplex. Several of the following results are given by Fiedler in his most recent work on the
subject [Fie11], but he does not prove them by means of the correspondence.

Lemma 4.12. For any hyperacute simplex T ⊆ Rn−1 and i ∈ [n], the following equations
hold:

1. vol(T{i}c) =
∑

j 6=i vol(T{j}c) cos θij(T );

2. vol2(T{i}c) =
∑

j 6=i vol2(T{j}c)−
∑

j,k 6=i,j 6=k vol(T{j}c)vol(T{k}c) cos θjk(T ); and

3. (n− 1)vol(T{i,j}c)vol(T ) = (n− 2)vol(T{i}c)vol(T{j}c) sin θij(T ) for all j 6= i.

Here, as usual, θij(T ) is the angle between T{i}c and T{j}c.

Remark 4.3. One might expect that the second equation in the above lemma follows imme-
diately from squaring the first. However, performing the computation demonstrates that this
is not the case. Hence the second equation is in fact providing new information.

Proof. It suffices to take T = S+, the inverse combinatorial simplex of some graph G. Let
{σi} be the vertices of SG, the combinatorial simplex of G. We have LG(i, j) = 〈σi,σj〉 =
‖σi‖2‖σj‖2 cosφij , where φij is the angle between σi and σj . Since the vertices {σi} are
dual to those of S+

G , we have cosφij = − cos θ+
ij where θ+

ij is the angle between S+
{i}c and
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S+
{j}c . (We are applying the same reasoning here as in Sections 2.5.2 and 3.2.2.) Combining

this with the fact that LG1 = 0 and Equation (4.10) gives

0 =
∑
j∈[n]

LG(i, j) = ‖σi‖22 −
∑
j 6=i
‖σi‖2‖σj‖2 cos θ+

ij

=
vol(S+

{i}c)

(n− 1)2vol2(S+)

(
vol(S+

{i}c)−
∑
j 6=i

vol(S+
{j}c) cos θ+

ij

)
,

implying that vol(S+
{i}c)−

∑
j 6=i vol(S+

{j}c) cos θ+
ij = 0 which proves the first equation. To see

the second, note that LG(i, k) = −
∑

j 6=k LG(i, k) (again using that LG1 = 0). Applying this
twice, we obtain

LG(i, i) = −
∑
j 6=i
LG(i, j) =

∑
j 6=i

∑
k 6=i

LG(k, j) =
∑
j 6=i
LG(j, j) +

∑
j,k 6=i,k 6=j

LG(k, j).

As above, translating this to expressions involving the volumes of facets of S+ and then
multiplying through by n2vol(S+) gives

vol2(S+
{j}c) =

∑
j 6=i

vol2(S+
{j}c)−

∑
j,k 6=i,k 6=j

vol(S+
{k}c)vol(S+

{j}c) cos θ+
kj .

It remains to prove the third equation. LetM be the Menger matrix of S+, and let U = {i, j}
and U1 = {i + 1, j + 1} for any i 6= j. Without loss of generality assume i < j. Notice that
M(U c1 , U

c
1) is the Menger matrix of the vertices {σk}k 6=i,j . Combining Sylvester’s equation

and our usual block matrix relation gives

detM(U c1 , U
c
1)

detM
= ±det

(
− 1

2
LG(U,U)

)
= ±1

4
det

(
‖σi‖22 〈σi,σj〉
〈σi,σj〉 ‖σj‖22

)
= ±1

4

(
‖σi‖22‖σj‖

2
2 − 〈σi,σj〉

2

)
= ±1

4
‖σi‖22‖σj‖

2
2(1− cos2 φij)

where φij is the angle between σi and σj (Section 2.5.2). Since the vertices {σi} are the
duals to those in S+, we have cosφij = − cos θ+

ij so

‖σi‖22‖σj‖
2
2(1− cos2 φij) = ‖σi‖22‖σj‖

2
2(1− cos2 θ+

ij) = ‖σi‖22‖σj‖
2
2 sin2 θ+

ij .

Writing detM(U c1 , U
c
1) in terms of vol(S+

Uc) and detM in terms of vol(S+) by means of

Equation (4.8), and using (4.10) to relate ‖σi‖22 = LG(i, i) and ‖σj‖22 = LG(j, j) to the
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volumes of S+
{i}c and S+

{j}c then yields

1

4(n− 1)2(n− 2)2

vol2(S+
Uc)

vol2(S+)
=

vol2(S+
{i}c)

(n− 1)2vol2(S+)

vol2(S+
{j}c)

(n− 1)2vol2(S+)
sin2 θ+

ij .

Notice that we have rid ourselves of the ambiguity in sign because we see that both sides
are the square of some quantity, hence are positive. Simplying and taking the square root of
both sides of the above expression gives the third equation. �

Our next set of results demonstrate the the inverse relation can be used not only to
infer geometric properties of simplices, but also graph-theoretic properties. A variant of the
following was proved by Fiedler [Fie11].

Lemma 4.13. For a weighted and connected tree T = (V,E,w) on n vertices let the matrix
ST describe the inverse distances between vertices, i.e., for (i, j) ∈ E, ST (i, j) = 1/w(i, j)
and for (i, j) /∈ E, ST (i, j) =

∑k−1
`=1 1/w(v`, v`+1) where i = v1, v2, . . . , vk = j is the unique

path between i and j. Then,

− 1

2

(
0 1t

1 ST

)(∑
i∼j 1/w(i, j) (d− 21)t

d− 21 LT

)
= I, (4.17)

where d = (deg(1), . . . ,deg(n)).

This result is interesting insofar as it lets us generate new statements concerning the
effective resistance in trees. For example:

Corollary 4.3. Let T be a weighted and connected tree. Then

∆tLT∆ +
4RT
n2

=
∑
i,j

1

w(i, j)
, and LG∆ =

(
2− 2

n

)
1− d,

where ∆ = diag(L+
T (i, i)) = 1

nR1− 1
n2 JR1 and d = (deg(1), . . . ,deg(n)).

Proof. Let ST be as it was in Lemma 4.13. It’s well known that in trees, the effective
resistance between nodes i, j is equal to

∑r−1
s=1 1/w(vs, vs+1) where i = v1, . . . , vr = j is the

shortest path between i and j in T (see e.g., [Ell11]). That is, RT = ST . Since matrix
inverses are unique, combining Equations (4.17) and (2.18) yields(∑

i∼j 1/w(i, j) (d− 21)t

d− 21 LT

)
=

(
∆tLT∆ + 4RT /n

2 −(LT∆ + 2
n1)t

−(LT∆ + 2
n1) LT

)
,

from which the claim follows. �

§4.3. Inequalities

In this section we demonstrate how the correspondence may be used to obtain both geometric
and graph-theoretic inequalities. We begin with an inequality relating the quadratic form
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L to the “weight” of the cuts associated with the pseudoinverse. It was first proved by
Devriendt and Van Mieghem [DVM18]. Interestingly, a parallel result for the normalized
Laplacian form does not seem to exist. As usual, omitted proofs are found in the appendix.

Lemma 4.14. For any f with 〈f,1〉 = 0, L(f) ≥ ‖f‖21/4w(∂+F+), for F+ def
= {i : f(i) ≥ 0}.

Next we give an (admittedly, somewhat undecipherable) inequality relating the centroids
of SG to the vertex matrix of Ŝ. The motivation is simply to demonstrate the potential uses
of known graph-theoretic inequalities in the simplex domain.

Using Cheeger’s inequality [CG97],

κG ≥ λ̂n−1 ≥
κ2
G

2
,

where λ̂1 ≥ λ̂n−1 > λ̂n = 0 are the eigenvalues of the normalized Laplacian of G, and κG is
the conductance of G,

κG
def
= min

U :vol(U)≤vol(G)/2

vol(∂U)

|U |
,

we can relate the centroids of SG to ŜG as follows.

Observation 4.1.

min
U :vol(U)≤vol(G)/2

‖c(SU )‖42|U |
2 ≤

n
min
i=1

(Σ̂Σ̂
t
)(i, i) ≤ min

U :vol(U)≤vol(G)/2
‖c(SU )‖22|U |.

Proof. Use that ‖c(SU )‖22 = |U |−2χULGχU (Section 3.4) and that Σ̂Σ̂
t

= Λ̂ (Equation (3.1))
and apply Cheeger’s inequality. �

We can also translate several of the results obtained in the previous section on volumes
and spanning trees into inequalities.

Lemma 4.15. For any hyperacute simplex T ⊆ Rn−1 and i ∈ [n], the following equations
hold:

1. vol(T{i}c) ≤
∑

j 6=i vol(T{j}c);

2.
∑

j 6=i vol2T{j}c ≥ vol2T{i}c ≥
∑

j 6=i vol2(T{j}c)−
∑

j,k 6=i,j 6=k vol(T{j}c)vol(T{k}c); and

3. (n− 1)volT{i,j}cvol(T ) ≤ (n− 2)vol(T{i}c)vol(T{j}c) for all j 6= i.

Proof. Follows immediately from Lemma 4.12 after recalling that because T is hyperacute
all interior angles are at most π/2. We remark that for the second equation we have simply
provided the easy upper bound provided by Equation (2) of Lemma 4.12. �
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§4.4. Quadrics

Here we explore several quadrics associated with the simplices of G. Again, proofs which are
found elsewhere are typically omitted and found in Appendix A.3.

We remind the reader that a quadric in Rd is a hypersurface of dimension d − 1 of the
form

{x ∈ Rd : xtQx+ rtx+ s = 0},

for some Q ∈ Rd×d, r ∈ Rd and s ∈ R. In R3, typical examples of quadrics are spheroids and
ellipsoids (r = 0 in these cases), paraboloids, hyperboloids, and cylinders. In what follows
we focus on ellipsoids, in particular on circumscribed ellipsoids. Such a quadric of interest in
simplex geometry is the following.

Definition 4.1 ([Kra83]). The Steiner Circumscribed Ellipsoid, or simply the Steiner Ellip-
soid of a simplex T with vertices {γi} is a quadric which contains the vertices and whose
tangent plane at γi is parallel to the affine plane spanned by {γj}j 6=i.

Figure 4.1 illustrates the Steiner ellipsoid of a generic simplex. Its existence and unique-
ness is guaranteed by the following theorem.

Theorem 4.3 ([Fie05]). The Steiner ellipsoid of a simplex T is unique and moreover, is the
ellipsoid with minimum volume which contains T .

Owing to its uniqueness, we denote the Steiner ellipsoid of the simplex T by E(T ). The
following lemma gives an explicit representation of the circumscribed ellipsoid of the combi-
natorial simplex of G—which we will henceforth call the (Steiner) circumscribed ellipsoid of
G—and of its inverse, which we call the inverse (Steiner) circumscribed Ellipsoid of G.

Lemma 4.16 ([Fie05]). The Steiner circumscribed ellipsoid of G and its inverse are described
by

E(SG) =

{
x : xtΣ+(Σ+)tx− n− 1

n
= 0

}
, (4.18)

and

E(S+
G ) =

{
x : xtΣΣtx− n− 1

n
= 0

}
. (4.19)

Perhaps more insightful representations of E(SG) and E(S+
G ) come from appealing to

Equations (3.1) and (3.2), i.e., Σ+(Σ+)t = Λ−1 and ΣΣt = Λ. Applying these,

E(SG) =

{
x : xtΛ−1x =

n− 1

n

}
, and E(S+

G ) =

{
x : xtΛx =

n− 1

n

}
(4.20)

This allows us to give explicit formulas for the semi-axes of E(S). The semi-axes of an
ellipsoid written in the standard form xtS2x = 1 with S ∈ Rd×d a diagonal matrix are the d
vectors ei · S(i, i)−1. They are the unique vectors ui such that any point x on the ellipsoid
can be written as x =

∑
i uiαi with

∑
i α

2
i = 1 [DVM18].
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Figure 4.1: A simplex T ⊆ R2 and its corresponding Steiner circumscribed ellipsoid in orange
(light) and circumscribed sphere in purple (dark). The arrows illustrate the semi-axes of the
ellipsoid. The purple point is the centre of the sphere—note that it does not necessarily
coincide with the origin of the ellipsoid.

Lemma 4.17. The semi-axes of the Steiner Ellipsoids E(SG) and E(S+
G ) are, respectively,

ei ·
√
λi

(
n− 1

n

)1/2

and
ei√
λi
·
(

n

n− 1

)1/2

,

for i = 1, . . . , n− 1.

Proof. Consider E(SG). The diagonal matrix S = Λ−1/2( n
n−1)1/2 has entries S(i, i) =

ei(
n

(n−1)λi
)1/2, and equation (4.20) demonstrates that E(SG) = {x : xtS2x = 1}. Apply

the definition of semi-axes. The argument is similar for E(S+
G ). �

The appearance of the eigenvalues in the semi-axes allows us to relate the volumes of E(SG)
and E(S+

G ). The volume of an ellipsoid in Rn−1 written in the standard form mentioned above
is

π
n−1
2

Γ(n+1
2 )

det
(
S−1

)
,

where Γ(z) is the gamma function. We emphasize that the gamma function is distinct from

ΓG, the total weight of spanning trees in G. For E(SG), S =
√

n
n−1Λ−1/2, so

vol(E(SG)) =
π
n−1
2

Γ(n+1
2 )

(
n− 1

n

)n−1
2

det Λ1/2

=
π
n−1
2

Γ(n+1
2 )

(
n− 1

n

)n−1
2
(∏
i<n

λi

)1/2

=
π
n−1
2

Γ(n+1
2 )

(
n− 1

n

)n−1
2 √

nΓ
1/2
G .

Moreover, as was noticed by Devriendt and Van Mieghem [DVM18], the linear dependence
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of both vol(E(SG) and vol(SG) on Γ
1/2
G (recall Corollary 4.1) implies their ratio is independent

of the particular graph G:

vol(E(SG))

vol(SG)
=

π
n−1
2

Γ(n+1
2 )

(
n− 1

n

)n−1
2 (n− 1)!√

n
.

A similar procedure may be performed with vol(E(S+
G )) and vol(S+

G ). In that case we
have

vol(E(S+
G )) =

π
n−1
2

Γ(n+1
2 )

(
n− 1

n

)n−1
2

det Λ−1/2 =
π
n−1
2

Γ(n+1
2 )

(
n− 1

n

)n−1
2

(nΓG)−1/2.

The ratio of vol(E(S+
G )) to vol(S+

G ) is the same as above.

Next we investigate the circumscribed sphere of the combinatorial simplex. Similarly to
the circumscribed ellipsoid, the circumscribed sphere of a convex body P is the sphere whose
boundary contains all the vertices of P. The circumscribed sphere does not exist in general.
However, just as it is possible to always draw a circle containing the endpoints of a triangle,
so the circumscribed sphere of a hyperacute simplex always exists as is demonstrated by the
following lemma.

Lemma 4.18 ([Fie93]). Let S+ ⊆ Rn−1 be a hyperacute simplex. The circumscribed sphere of
S+ exists and is given by the set of points {x : x = Σα, 〈α,1〉 = 1, 〈α,Dα〉 = 0}, which is

a sphere centred at the point 1
2Σ(LG∆ + 1/n) with radius 1

2

√
∆tLG∆ + 4Rtot

G /n2 where G

is S+’s associated graph, and ∆ = diag(L+
G(i, i)).

Remark 4.4. It is no coincidence that the radius of the sphere is related to the top left entry
in the inverse of the Menger matrix associated with S+. This was noticed by Fiedler and is
relied upon in the proof of Lemma 4.18.

Until this point, we have been examining only the quadrics associated with the com-
binatorial simplices. We now consider the normalized simplices. Since all the vertices
of the normalized simplex lie on the unit sphere, it’s clear that the circumscribed sphere
of ŜG is precisely {x : xtx = 1}. It’s not as straightforward to see what they circum-
scribed ellipsoid, E(Ŝ), is on the other hand. One might suspect that it obeys the equa-

tion xtΣ̂
+

(Σ̂
+

)t = 1 − 1/n, as this is the natural analogue of (4.18). However, because

Σ̂
+

and Σ̂ obey a non-constant pseudoinverse relation, this equation fails the first test:

σ̂tiΣ̂
+

(Σ̂
+

)tσ̂i = χti(I−
√
w
√
w
t
/vol(G))χi = 1−

√
w(i)w(j)/vol(G) is not constant. How-

ever, at this point we recall that beyond being simply the inverse simplex of S, S+ is also
its dual. We might thus hazard a guess that the correct matrix is Σ̂

∗
(Σ̂
∗
)t, where Σ̂

∗
is the

vertex matrix of Ŝ∗. The following lemma confirms this hypothesis and, moreover, verifies
that similar reasoning can be applied to the Steiner Ellipsoid of any simplex—not only those
corresponding to graphs.

Lemma 4.19. Let T ⊆ Rn−1 be a simplex whose dual has vertex matrix Σ∗. Then the Steiner
ellipsoid of T is

E(T ) =

{
x : xtΣ∗(Σ∗)tx =

n− 1

n

}
.
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Proof. The computation is almost identical to that in the proof of Lemma 4.16, except we
take M = Σ∗(Σ∗)t and use the general relationship between ΣtΣ and Σ∗(Σ∗)t given by
Lemma 4.1. �

§4.5. Resistive Polytope

In this section we explore the relationship between the inverse combinatorial simplex of G
and another geometric object related to the effective resistance of the graph. Consider the

vertices µi = L
+/2
G χi ∈ Rn, for i ∈ [n]. This yields n points in Rn, also with pairwise squared

distances equal to the effective resistance of the graph:

∥∥µi − µj∥∥2

2
=
∥∥∥L+/2

G (χi − χj)
∥∥∥2

2
= (χi − χj)tL+

G(χi − χj) = reff(i, j).

This embedding has been referred to as a resistive embedding [Gha15, DLP11], and is
an example of an `22 metric [ARV09] owing to the well known fact that the effective resis-
tance is a metric (e.g., [KR93]). That being said however, while the mapping seems to be
known [GBS08], there is very little literature on its properties.

Set
RG

def
= conv({µi}), (4.21)

and call RG the resistive polytope of G. Note that L
+/2
G is RG’s vertex matrix. As usual, we

may omit the subscript G for convenience. We emphasize that while the vertices {µi} obey
the same pairwise distances as those of the inverse simplex S+

G , RG is not the same object
as S+

G . First, of course, there is the fact that it sits in Rn. However, we also note that the
entries of µi (the first n− 1, at least) do not match those of σ+

i . Indeed,

µi(`) = L
+/2
G (`, i) =

∑
j∈[n]

λ
−1/2
j ϕjϕ

t
j(`, i) =

∑
j∈[n]

λ
−1/2
j ϕj(`)ϕj(i).

Recalling the formula for the vertices of the inverse simplex S+ demonstrates that

µi(`) =
∑
j∈[n]

σ+
` (j)ϕj(i) =

∑
j∈[n]

σ+
i (j)ϕj(`).

Hence, in general, µi(`) 6= σ+
i (`). However, the dot product between the vertices of RG does

respect the same relationships as those between the vertices of S+
G :

〈µi,µj〉 =
∑
`∈[n]

L
+/2
G (`, i)L

+/2
G (`, j)

= 〈L+/2
G (·, i),L+/2

G (·, j)〉

= 〈L+/2
G (·, i),L+/2

G (j, ·)〉 = L+
G(i, j),
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Figure 4.2: The resistive embedding (in orange; light) of a graph with three nodes sits in a
plane (gray) which is parallel to the all ones vector.

since L
+/2
G is symmetric and L

+/2
G L

+/2
G = L+

G. We can also see this from recalling that

reff(i, j) = L+
G(i, i) +L+

G(j, j)− 1

2
L+
G(i, j),

combined with the facts that
∥∥µi − µj∥∥2

2
= reff(i, j) and ‖µi‖

2
2 = L+

G(i, i). The centroid of
RG also coincides with the origin of Rn:

c(RG) =
1

n
L

+/2
G 1 =

1

n

∑
i∈[n−1]

λ
−1/2
i ϕiϕ

t
i1 = 0.

One therefore begins to suspect that RG is the same object of S+
G , simply projected onto

some hyperplane of Rn. The following lemma demonstrates that this is indeed the case, and
that the hyperplane is that which is has span(1) as its orthogonal complement. See Figure 4.2
for an illustration.

Lemma 4.20. The all ones vector is orthogonal to RG.

Proof. We need to show that for all p, q ∈ RG, 〈1,p− q〉 = 0. As usual, let x and y be the

barycentric coordinates of p and q so that p = L
+/2
G x and q = L

+/2
G y. We have

〈1,p〉 =
∑
`∈[n]

(L
+/2
G x)(`) =

∑
`∈[n]

∑
j∈[n]

L
+/2
G (`, j)x(j) =

∑
j∈[n]

x(j)
∑
`∈[n]

L
+/2
G (`, j),

where for any j, ∑
`∈[n]

L
+/2
G (`, j) = 1tL

+/2
G χj =

∑
`∈[n−1]

λ
−1/2
` 1tϕ`ϕ

t
`χj = 0,

since ϕi ∈ span(1)⊥ for all i < n. Hence 〈1,p〉 = 0 meaning that 〈1,p− q〉 = 0 as well. �

The relationship between R and S gives us an alternate way to prove equalities such as
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(3.14): There exists an isometry2 between R and S, so∥∥c(S+
U )
∥∥2

2
= ‖c(RU )‖22 =

1

|U |2
∥∥∥L+/2

G χU

∥∥∥2

2
=

1

|U |2
w(δ+U).

Additionally, just as S+
G has the inverse SG, RG has an inverse which respects the same

relationships. As one might guess, this inverse has vertex matrix L
1/2
G . To see this, for any

i, j 6= k, we have

〈L1/2
G χi,L

+/2
G χj −L

+/2
G χk〉 = χtL

1/2
G L

+/2
G (χj − χk)〉,

where

L
1/2
G L

+/2
G =

n−1∑
r,s=1

λ1/2
r λ−1/2

s ϕrϕ
t
rϕsϕ

t
s =

n−1∑
r=1

ϕrϕ
t
r,

and

n−1∑
r=1

χiϕrϕ
t
rχj =

n−1∑
r=1

ϕr(i)ϕr(j) = δij −
1

n
,

using Equation (3.3). Hence,

χtiL
1/2
G L

+/2
G (χj − χk) = δij −

1

n
− (δik −

1

n
) = δij .

To conclude, there exists an isometry between the inverse combinatorial simplex of a
graph G (which lies in Rn−1) and the effective polytope, RG of G (which lies in Rn). The
resistive polytope lies in a hyperplane orthogonal to the all-ones vector.

§4.6. Continuous Time Random Walks

This current section is for the reader who is less interested in the mathematics behind the
graph-simplex correspondence, and is reading only for the vague hope that some of the
underlying geometry will be aesthetically pleasing. While the content has certainly failed in
this vein thus far, this section is the closest we will come to remedying the situation.

Consider a random walk on a graph. The probability distribution governing the dynamics
is a barycentric coordinate: each coordinate is non-negative and they sum to one. Therefore,
we can represent the probability distribution as a point in the simplex and the probability
distribution as a function of time as a path in the simplex. See Figure 4.3 for an illustration.
In what follows we give equations which determine the dynamics of the path in the simplex
as a function of the eigenvalues and eigenvectors of the graph.

2A distance preserving map.
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(a) (b) (c)

Figure 4.3: Random walk dynamics plotted as points in the simplex. Figures (a) and (b) are
plotted using the normalized simplex; figure (c) uses the normalized simplex. The underlying
graph of Figure (a) has edges (1, 2), (2, 3), (3, 4), (2, 4), that underlying (b) edges (1, 2) and
(2, 3) and that of (c) is the complete graph K4.

We will examine a continuous time random walk which obeys the equation

dπ(t)

dt
= −LGW−1/2

G π(t),

and has the solution π(t) = exp
(
−LGW−1/2

G t
)
π(0). This, however, is relatively unsightful

in terms of analyzing the dynamics of π(t) in terms of the graph. Instead, in what follows
we seek to develop a solution to π(t) in terms of the eigendecomposition of G. Define

π1(t) = W−1/2π(t) and π2(t) = Φ̂
t
π1(t), where we recall that Φ̂

t
is the eigenvector matrix

of L̂G. Then

dπ1(t)

dt
= W−1/2dπ(t)

dt
= −W−1/2LGW

−1/2W−1/2π(t) = −L̂Gπ1(t),

and, using the eigendecomposition of L̂G,

dπ2(t)

dt
= Φ̂

tdπ1(t)

dt
= −Φ̂

t
L̂Gπ1(t) = −Φ̂

t
Φ̂Λ̂Φ̂

t
π1(t) = −Λ̂π2(t),

since Φ̂
t
Φ̂ = I. This equation has the solution

π2(t) = exp
(
−Λ̂t

)
π2(0) =

e
−λ1t

. . .

e−λn−1t

π2(0).

Combining the definitions of π1 and π2 gives π2(t) = Φ̂
t
π1(t) = Φ̂

t
W−1/2π(t), hence

π(t) = W 1/2Φ̂π2(t). As a point in the simplex this gives

p(t) = Σπ(t) = Λ1/2ΦtW 1/2Φ̂π2(t) = Y π2(t),
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after defining Y
def
= Λ1/2ΦtW 1/2Φ̂. As a point in the normalized simplex, we have

q(t) = Σ̂π(t) = Λ̂1/2Φ̂
t
W 1/2Φ̂π2(t) = Ŷ π2(t),

where Ŷ = Λ̂1/2Φ̂
t
W 1/2Φ̂. We thus see that the matrices

Y =


λ

1/2
1

∑
i∈[n]ϕ1(i)ϕ̂1(i)w

1/2
i . . . λ

1/2
1

∑
i∈[n]ϕ1(i)ϕ̂n−1(i)w

1/2
i

...
. . .

...

λ
1/2
n−1

∑
i∈[n]ϕn−1(i)ϕ̂1(i)w

1/2
i . . . λ

1/2
n−1

∑
i∈[n]ϕn−1(i)ϕ̂n−1(i)w

1/2
i

 ,

and

Ŷ =


λ̂

1/2
1

∑
i∈[n] ϕ̂1(i)ϕ̂1(i)w

1/2
i . . . λ̂

1/2
1

∑
i∈[n] ϕ̂1(i)ϕ̂n−1(i)w

1/2
i

...
. . .

...

λ̂
1/2
n−1

∑
i∈[n] ϕ̂n−1(i)ϕ̂1(i)w

1/2
i . . . λ̂

1/2
n−1

∑
i∈[n] ϕ̂n−1(i)ϕ̂n−1(i)w

1/2
i

 ,

govern the dynamics of the random walk in SG and ŜG, respectively. More specifically, letting
Y = (y1 . . . yn) we have

p(t) =
∑

i∈[n−1]

yi(π2(t))(i) =
∑

i∈[n−1]

yie
−λitΦ̂

t
W−1/2π(0)(i),

and a similar equation for q(t).
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Chapter 5

Algorithmics

I’m smart enough to know that I’m dumb.

— Richard Feynman

Beware of bugs in the above code; I have only
proved it correct, not tried it.

— Donald Knuth

This final technical chapter will discuss some of the algorithmic foundations and con-
sequences of the graph-simplex correspondence. Vis-à-vis foundations, we will chiefly be
concerned with transitioning between a graph and its various simplices. We will explore
lower bounds for how quickly this can be done if we wish to obtain the precise result1, and
whether we can “approximate” any of the constructions (e.g., given the graph G can we
quickly obtain a simplex which serves as an approximation2 to SG.) With respect to algo-
rithmic consequences, we will attempt to leverage knowledge we have in the hitherto mostly
unrelated areas of computational graph theory and high-dimensional computational geom-
etry to draw new conclusions about the complexity of several problems. For instance, if a
graph theoretic problem has an analogue in the simplex, any fact regarding the problem’s
difficulty—whether it’s NP-complete, say—translates to an immediate result concerning its
geometric counterpart. In particular, since the simplex of a graph can be generated in poly-
nomial time given the graph (due to the fact that an eigendecomposition can be computed
in polynomial time) and vice versa, problems which are solvable in polynomial time in either
the simplex or graph domain translate to polynomially solvable (yet perhaps not optimal!)
problems in the other domain. Likewise, problems which are NP-hard in one domain have
analogues which are NP-hard in the other.

For the benefit of the reader unfamiliar with computational complexity and reductions,
we begin the chapter with a short section containing this background material. We will also
discuss computational representations of a simplex therein.

1Ignoring issues of floating point number accuracy.
2The notion of approximating a simplex is rather ambiguous and will be expounded upon at a later time.
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§5.1. Preliminaries

Asymptotics. Asymptotic notation will be used to analyze the running time of various
algorithms. We use the standard definitions—see any reference text on algorithm design for
more background (e.g., [KT06]). Let f, g : U ⊆ R → R be functions. Write f = O(g)
(or f(n) = O(g(n))) if lim supx→∞ |f(x)/g(x)| < ∞, and f = Ω(g) if g = O(f). Write
f = o(g) if limx→∞ |f(x)/g(x)| = 0 and f = ω(g) if g = o(f). If f = O(g) and f = Ω(g)
we write f = Θ(g). We will also use the tilde to hide polylog factors. Say f = Õ(g) if
f(n) = O(g(n) logc n) and f = Ω̃(g) if f(n) = Ω(g(n) log−c n), for some c ≥ 0.

Simplex representations. In order to discuss the algorithmics pertaining to simplices and
convex polyhedra in general, we must discuss how such objects are represented by a machine.
Clearly, we cannot simply enumerate all the points enclosed by a body in high-dimensional
space. Instead we must concisely represent the boundaries of the polytope. The two most
common such descriptions are

• V-description, in which we are given the vertex vectors of the polytope;

• H-description, in which we are given the parameters of the half-spaces whose intersection
defines the polytope. That is, if T =

⋂
i{x : 〈zi,x〉 ≥ bi}, then an H-description of T

would be the vectors {zi} and the scalars {bi}.

It’s not at all clear whether these descriptions are equivalent in the sense that one can
easily generate one from the other. Indeed, the complexity of vertex enumeration (generating
a V-description from an H-description) and facet enumeration (generating an H-description
from a V-description) remains an open problem for general polytopes [KP03], although there
exist polynomial time algorithms when the polytopes are simplices (e.g., [BFM98]). We will
return to this fact later on.

We end by remarking that when discussing general polytopes, we continue to work in
Rn−1 as a vector space. Thus, the vertices of the polytope are still vectors which begin at
the origin.

Reductions. Some background on computational models and reductions will also be use-
ful. For more details see [KT06] or [Knu11]. We will use the typical computational model
for analyzing algorithms. Without diving too far into the minutiae, we assume that single
arithmetic operations require O(1)-time, i.e., constant. We will analyze the runtime of an
algorithm as a function of how many bits it takes to represent the input. A common tool
for providing upper bounds on the runtime of an algorithm is to “reduce” it to a problem
for which a bound is already known. Assume problem P requires time Ω(fP (n)) to solve—
meaning that any algorithm requires time Ω(fP (n))—where n represents the size of the input
and fP (n) is some function of n, e.g., fP (n) = n2 log n. Let Q be a distinct problem and
suppose that for every instance of P we can transform the input of P to a valid input for
Q, and transform the output of Q to a valid output of P , both in time O(fP (n)). We have
then established that fQ(n) = Ω(fP (n)), where fQ is the runtime required to solve Q, since
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Figure 5.1: Illustration of the relationships between the classes NP, NP-hard, and NP-
complete. “Poly-time” refers to problems with polynomial time solutions. Such algorithms
can trivially be verified in polynomial time, hence are a subset of problems in NP. We empha-
size that the diagram is for intuitive purposes only, and may not reflect the true relationships
between these classes. For example, in the unlikely case that P=NP (i.e., all problems in
NP are solvable in polynomail time), then the regions “Poly time”, NP and NP-complete
coincide. Additionally, the relative sizes of the regions above say nothing about their true
cardinalities.

we can solve P in time fQ(n) +O(fP (n)) by transforming any input to P to the input of Q,
solving Q, and transforming the output back. In this case we say that P has been reduced to
Q, or that Q was reduced from P . Such a technique will be used extensively throughout the
next few sections.

The complexity classes NP, NP-hard, and NP-Complete. For brevity, we restrict
ourselves to a very brief presentation of these concepts. The interested reader can find more
background in any reference on computational complexity theory.

The class NP is the set of all decision problems3 which have solutions which are verifiable in
polynomial time. It is possible, for example, to check in polynomial time whether a given set
is in fact an independent set of a certain size. Thus the decision variant of Independent-
Set lies in NP. NP stands for “non-deterministic polynomial time”, as it is formally the
set of all decision problems solvable by a non-deterministic Turing machine in polynomial
time [Pap03].

The class NP-hard comprises all the problems to which any problem in NP can be reduced
in polynomial time (see above). That is, P ∈ NP-hard iff for all Q ∈ NP, Q can be reduced
to P in polynomial time. Thus, to show that P ∈ NP-hard, it suffices to reduce another
problem R ∈ NP-hard to P (in polynomial time) since, in this case, if all problems in NP are
reducible to R they are in turn reducible to P . We tend to think of NP as the set of “hard”
problems.

Finally, the class NP-complete is the intersection of the classes NP and NP-hard. Infor-
mally then, it is the class of all “hard” decision problems.

3That is, problems to which we seek a yes/no answer.
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§5.2. Computational Complexity

In this section we investigate the relationships between problems in one domain—either the
graph-theoretic or geometric domain—and their analogues in the other. The following result
exemplifies the power of the graph-simplex correspondence in yielding results which seem
otherwise difficult to obtain (certainly more difficult than the following proof, at any rate). It
was first stated by Devriendt and Van Mieghem [DVM18] for inverse combinatorial simplices,
and can be slightly generalized as follows.

Lemma 5.1. Computing the altitude of minimum length in any simplex is NP-hard.

Proof. The relationship
∥∥a(S+

U )
∥∥2

2
= w(∂U)−1 (Lemma 3.15) for the inverse simplex of a

graph G demonstrates that the problem of computing a minimum length altitude in any
hyperacute simplex is NP-hard, because computing the maximum weight cut in any weighted
graph is NP-hard [Kar72]. Since the class of all hyperacute simplices is contained in the class
of all simplices, the result follows. (We note that formally, we have reduced the maximum
cut problem to the minimum altitude problem.) �

Remark 5.1. In the above statement and its proof, the description of the polytope and simplex
was not specified. This is due to the fact that—as discussed above—for simplices there is a
polynomial time algorithm to translate between the various descriptions. With regard to NP-
completeness therefore, the description makes no difference. Consequently, we will continue
to ignore this distinction for the remainder of this section.

Remark 5.2. Altitudes do not have an analogue in general polyhedra. However, for those
problems which do have analogues, if they are NP-hard in hyperacute simplices then are so
in general polyhedra (since simplices are a subclass of polyhedra). Henceforth, we might use
this observation without justification.

The remainder of this section is dedicated to obtaining more results of this type.

We begin by investigating independent sets. Given a graph G = (V,E,w), recall that an
independent set is a subset I ⊆ V such that if i, j ∈ I then (i, j) /∈ E. The weight of an
independent set is nicely described by the Laplacian quadratic form. If I is an independent
set note that ∂(i)∩Ic = ∂(i) for all i ∈ I; otherwise I would contain two vertices which share
an edge. Therefore,

w(δI) =
∑
i∈I

∑
j∈Ic

w(i, j) =
∑
i∈I

∑
j∈∂(i)∩Ic

w(i, j) =
∑
i∈I

∑
j∈∂(i)

w(i, j) = vol(I),

so

L(χI) =
∑
i∼j

w(i, j)(χI(i)− χI(j))2 =
∑
i∈I

∑
j:j∼i

w(i, j) = vol(I) = w(∂I),

where the second inequality again follows from the fact that I is an independent set.

The Independent-Set problem involves finding the largest independent set in a given
graph or, in the decision variant, whether there exists an independent set of size at least
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(a) (b) (c)

Figure 5.2: (a) A connected graph. (b) Two of its independent sets; one in red (dark) and
one yellow (light). The red set constitutes a maximum sized independent set. (c) Two of its
cliques; one in blue (dark), one turquoise (light). The blue set constitutes a maximum sized
clique.

k for a given k. The decision variant is NP-complete while the optimization version is NP-
hard [Kar72]. Suppose we assign each vertex i a weight f(i) ≥ 0. The Max-Weight

Independent-Set problem consists of maximizing f(I)
def
=
∑

i∈I f(i) over all independent
sets I. Clearly Max-Weight Independent-Set is NP-hard in general, seeing as it reduces
to the usual independent set maximization problem by taking f(i) = 1 for all i. If f is
a linear function of the weights so that f(i) = αw(i) for all i and some α > 0, we call
the corresponding problem α-Vertex-Weighted Independent-Set. We will focus on
the case α = 1 for clarity, and call the corresponding problem just Vertex-Weighted
Independent-Set. The difficulty of this problem is not immediately clear, since it is more
structured than simply Max-Weight Independent-Set. The next lemma removes any
doubt as to the problem’s tractability.

Lemma 5.2. Vertex-Weighted Independent-Set in NP-complete.

Proof. First we note that Vertex-Weighted Independent-Set is in NP. Indeed, the size
of a given set I can be checked in O(|I|) time and it can be verified to be an independent set
by checking in time O(|I|2) whether any pair in |I| has an edge in the graph.

To see that is it NP-hard, we reduce from Independent-Set. Let a graph G and a
parameter k be given. The intuition behind the following reduction is the following. We
construct a graph H with V (H) ⊇ V (G) such that each vertex v ∈ V (G) has constant degree
in H. Each independent I in G therefore has volume proportional to |I| in H. The trick is
then to ensure that each independent set in H also corresponds to an independent set in I.
Let us proceed with the formalities.

Let m = maxi degG(i) be the maximum degree of any vertex in G. Construct H as
follows. For each vertex u ∈ V (G), define α(u) = m − degG(u) new vertices u1, . . . , uα and
take

V (H) = V (G) ∪
⋃

u∈V (G)

{u1, . . . , uα}.

We call the vertices which were originally in V (G) real, and the newly created vertices fake.
We add to E(H) the original edges in G and several sets of new edges. First, we add an edge
between each real vertex and all its corresponding fake vertices ((u, ui) for i = 1, . . . , α(u)
and all u ∈ V (G)), and between all fake vertices corresponding to a single vertex. Thus, each
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vertex u and its fake vertices u1, . . . , uα form a clique. Next, we add an edge between every
pair of fake vertices, i.e., (ui, vj) for all u, v ∈ V (G) and i ∈ [α(u)], j ∈ [α(v)]. Formally then,

V (H) = V (G) ∪
⋃

u∈V (G)

{(u, ui) : i ∈ [α(u)]} ∪
⋃

u,v∈V (G)

{(ui, vj) : i ∈ [α[u], j ∈ [α(v)]}.

We claim that G has an independent set of size k iff H has a vertex weighted independent
set of size

mk +
∑

i∈V (G)

α(i).

Consider first an independent set I ⊆ V (G) in G. Take any vertex v ∈ V (G) \ I (this set
is non-empty, else G has no edges), and let vi be one of its fake vertices. Consider the set
J = I∪{vi} ⊆ V (H). We claim J is an independent set. Indeed, all added edges in H involve
fake vertices. Hence the vertices in I still constitute an independent set in H. Moreover, the
only real vertex with which vi shares an edge is v, which is not in I by assumption. Hence J
is an independent set in H. Its volume is

volH(J) = degH(ui) +
∑
i∈I

degH(i)

=
∑

v∈V (G)

α(v) +
∑
i∈I

(degG(i) + α(i)) =
∑

v∈V (G)

α(v) +m|I|.

Now consider an independent set J in H. Observe that J contains at most a single fake
vertex (since all fake vertices are connected). Moreover, if it has no fake vertices, we may
add a fake vertex of one of the real vertices which is not in J . Consequently, without loss of
generality we may write J = I ∪ {vi} where I ⊆ V (G) are real vertices and vi a fake. The
edges in H are a superset of those in G, hence I is an independent set in G. The volume of
J in H is computed in the same way as above.

We conclude that G has an independent of size k iff H has an inpedendent set of size mk+∑
i∈(V (G) α(i), which demonstrates that Max-Weight Independent-Set is NP-hard. �

This result allows us to conclude that certain optimizations problems in hyperacute
simplices—thus convex polytopes in general—are NP-hard.

Lemma 5.3. Let P be a convex polytope with vertex set V . The optimization problem

min
I⊆V,I 6=∅

‖c(PI)‖22
|I|

s.t. 〈σi,σj〉 = 0, i, j ∈ I,

is NP-hard. In particular, it is NP-hard whenever P is the combinatorial simplex of a graph.

Proof. Let P = S be the combinatorial simplex of a graph G. Using that 〈σi,σj〉 = w(i, j),
the condition that 〈σi,σj〉 = 0 for all i, j ∈ I translates to (i, j) ∈ E(G) for all i, j ∈ I.
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Moreover, Equation (3.14) in Section 3.4 gives us

|I|
‖c(SI)‖22

= wG(∂I) = vol(I),

for I an independent set. The above optimization problem can consequently be formulated
as

max
I⊆V (G)

volG(I), s.t. I is an independent set.

which is precisely the Vertex-Weighted Independent-Set problem. �

We can play a similar game by using the relationships furnished by the normalized Lapla-
cian as opposed to the combinatorial Laplacian. Doing this removes the normalizing factor
of |I| from the optimization problem in the previous result.

Lemma 5.4. Let P be a convex polytope with vertex set V . The optimization problem

min
I⊆V,I 6=∅

‖c(PI)‖22

s.t. 〈σi,σj〉 = 0, i, j ∈ I,

is NP-hard. In particular, it is hard for those polytopes and simplices with all vertices on the
unit sphere.

Proof. The proof is similar to the previous lemma. For P the normalized simplex of a graph
G, the condition 〈σi,σj〉 = 0 once again implies that I must be an independent set. As
before, notice that for such an I, if i ∈ I then ∂(i) ∩ Ic = ∂(i) (none of i’s neighbours are in
I). Moreover, for i, j ∈ I, w(i, j) = 0. Therefore, Equation (3.17) yields

L̂(χI) =
∑
i∈I

1

w(i)

∑
j∈Ic∩∂(i)

w(i, j) =
∑
i∈I

w(i)

w(i)
= |I|.

The length of the centroid PI is then

‖c(PI)‖22 =
1

|I|2
χtIΣ̂

t
Σ̂χI =

1

|I|2
L̂G(χI) =

1

|I|
,

so the optimization problem can be formulated as

max
I⊆V (G)

|I|, s.t. I is an independent set,

which is the Independent-Set problem. �

A clique in a graph G is a complete subgraph of G. The Max-Clique problems asks,
given G, what is the largest k such that G has a clique of size k? Its decision version variant,
k-Clique, has parameters G and k, and asks whether G has a clique of size k. Karp [Kar72]
demonstrated that k-Clique ∈ NP and Max-Clique ∈ NP-hard.
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Lemma 5.5. Given a polytope in either V-description or H-description, consider finding a
subset U of the vertices such that none of the vertices in U are orthogonal. The optimization
version of these problem is NP-hard while the decision variant is NP-complete, even in the
case of hyperacute simplices.

Proof. The optimization version corresponds to Max-Clique while the decision variant cor-
responds to k-Clique via the correspondence. �

Next we extract a result based on the most (in)famous problem in computational graph
theory: Graph isomorphism. An isomorphism between two graphs G1 and G2 is a bijection
f : V (G1) → V (G2) such that (u, v) ∈ E(G1) iff (f(u), f(v)) ∈ E(G2). We write G1

∼= G2

if G1 is isomorphic to G2. The Graph-Isomorphism problem asks, given G1, G2, whether
they are isomorphic. It’s clear that Graph-Isomorphism ∈ NP, but whether it is NP-
complete remains an open question [MP14]. László Babai recently claims to have solved the
problem in quasipolynomial time [Bab16]; the work is still being verified. Accordingly, we
call a problem Graph-Isomorphism-Hard if it can be reduced to to Graph-Isomorphism in
polynomial time, demonstrating that said problem is polynomial time equivalent to Graph-
Isomorphism. We are interested in the relationship between graph isomorphism and poly-
tope congruence.

Theorem 5.1. Deciding whether two hyperacute simplices are congruent is Graph Isomor-
phism Hard.

Proof. Let two graphs G1 and G2 be given. Compute their corresponding inverse simplices
S+

1 and S+
2 (which takes cubic time by computing the eigencomposition of both graphs—

see Section 5.3). We claim that S+
1 and S+

2 are congruent iff G1
∼= G2. If S+

1 and S+
2 are

congruent, then they must be rotationally congruent since they are both centred at the origin.
That is, there exists a rotation matrix Q such that QΣ+

1 = Σ+
2 . Recalling that Q obeys

QtQ = I,

L+
G2

= (Σ+
2 )tΣ+

2 = (QΣ+
1 )t(QΣ+

1 ) = (Σ+
1 )tQtQΣ+

1 = (Σ1)+Σ+
1 = L+

G1
,

so G1 and G2 share the same pseudoinverse Laplacian. Since the pseudoinverse is unique
(Lemma 2.4), G1 and G2 share the same Laplacian and are therefore isomorphic. Conversely,
if G1

∼= G2, then there exists a relabelling of the vertices such that their Laplacian matrices
are identical, implying that the simplices are congruent. �

Kaibel and Schwarz [KS08] investigated the problem of polytope isomorphism and demon-
strate that it is Graph-Isomorphism-Hard. They define two polytopes as isomorphic if they
have the same face-lattice—the lattice in which the nodes correspond to subsets of the ver-
tices, and the lattice ordering is by face inclusion. Since congruent simplices share the same
face lattice up to labelling, Theorem 5.1 implies their result.
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§5.3. There and Back Again: A Tale of Graphs and Simplices

In this section we investigate the computational aspects of transitioning between the var-
ious objects which we’ve studied thus far. As one should expect given that the mapping
between graphs and simplices relies on the eigenvalues and eigenvectors of graph Laplacians,
the complexity of these transitions is intimately related with the complexity of computing
eigendecompositions. As we will see, if we are prepared to compute eigendecompositions,
then we can compute all the objects from one another. However, since solving the eigende-
composition is expensive in general (see below), we are mainly interested in circumstances in
which a transition can be computed without resorting to this. Unfortunately, it will become
clear that the complexity of computing a Laplacian eigendecomposition is actually a lower
bound to computing many of the transitions.

Let M(n) denote the complexity of the eigendecomposition problem. It is known that
M(n) = Ω̃(n3 + n log2 log ε) to obtain a relative error4 of 2−ε, and there exist algorithms
which run in time O(n3 + n log2 log ε) [PC99]. Let Laplacian Eigendecomposion refer to
the problem of computing the eigendecomposition of the Laplacian (either the combinatorial
or normalized)of a graph, i.e., computing its eigenvalues and eigenvectors. The complexity of
Laplacian Eigendecomposion does not seem to be known in general, and we thus denote
the lower bound by Ω(nτ ) for some τ . We will assume, based on the difficulty of general
eigendecomposition that τ > 2.

Observe that given G, we can compute the combinatorial and normalized simplices (and
their inverses) by first constructing the combinatorial or normalized Laplacian in O(n2), per-
forming an eigendecomposition in time O(nτ ), and constructing the vertices of the simplices
from the eigenvalues and eigenvectors in time O(n2). Using our assumption that τ > 2, this
takes total time O(nτ ). Moreover, starting with a simplex with vertex set Σ, one can compute
ΣtΣ in the time required for matrix multiplication, which is currently O(n2.3727) [Wil12] and
whose lower bound is Θ(nκ) for some 2 ≤ κ ≤ 2.3727 [Sto10]. If the simplex is the simplex of
a graph then this yields the Laplacian (or its pseudoinverse) in time O(n2.3727), and from here
any of its simplices in time O(nτ ). Hence, we can transition between the various simplices in
time O(nmax{2.3727,τ}). In what follows therefore, we attempt to beat the barrier of O(nτ ).

Besides the question of transitioning between various objects, we might be interested in
the issue of certification. That is, verifying whether a given simplex is one of the combinatorial
or normalized simplices of a graph. We will investigate this question at the end of this section.

Nota Bene: Throughout this section, when referring to the complexity of generating a
graph, we mean the complexity of generating any data structure which describes its connec-
tivity; that is, lists its edges (and their weights, if applicable). Formally, the edge weights
should be accessible in O(1) time. The Laplacian matrix, adjacency matrix, incidence matrix,
etc., all suit this purpose. Similarly, when discussing the problem of generating a simplex
from a graph, we assume access to such a data structure. We remark that the the normalized
Laplacian matrix is not such a structure; it provides no immediate access to the edge weights.

We begin by investigating the relationship between S and Ŝ, when either S or Ŝ are given

4We note that the relative error is a necessary parameter of any algorithm because eigenvalues may be
irrational.
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V H

From/To G SG S+
G ŜG Ŝ+

G SG S+
G ŜG Ŝ+

G

G — Ω(nτ ) Ω(nτ ) Ω(nτ ) Ω(nτ ) Ω(nτ ) Ω(nτ )

V

SG O(n3) — Ω(nτ ) O(n2) Ω(nτ ) O(1)

S+
G Ω(nτ ) — O(1) Ω(nτ )

ŜG ? / O(n2) — Ω(nτ )

Ŝ+
G Ω(nτ ) —

H

SG Ω(nτ ) O(n2) — Ω(nτ )

S+
G O(n2) Ω(nτ ) Ω(nτ ) —

ŜG —

Ŝ+
G —

Figure 5.3: Summary of results for precise mappings. A slash refers to a difference in runtimes
when the graph is available versus when it isn’t. The quantity before the slash indicates the
runtime without the graph, after the slash the runtime with the graph. A question mark or
empty square indicates that no bounds are yet known.

and we are told a priori that they are the simplices of a graph. The results obtained in this
section are summarized in Figure 5.3.

Between S and Ŝ. Let us consider the computational complexity of transitioning between
S and Ŝ and vice versa. Let φij (resp., φ̂ij) be the angle between σi and σj (resp., σ̂i and
σ̂j). Using the typical formula for the dot product in Euclidean space we have

cosφij =
〈σi,σj〉
‖σi‖2‖σj‖2

=
LG(i, j)√
w(i)w(j)

= L̂G(i, j), and cos φ̂ij =
〈σ̂i, σ̂j〉
‖σ̂i‖2‖σ̂j‖2

= L̂G(i, j),

since ‖σ̂i‖2 = 1 for all i. That is, the angles between vertices in S in Ŝ are the same. Suppose
we are given the simplex S and told it is the combinatorial simplex of a graph. For each
σi = Σ(S), define a new vertex

γi =
σi
‖σi‖2

.

Is it evident that the angle between γi and γj is identical to that between σi and σj :

〈γi,γj〉
‖γi‖2

∥∥γj∥∥2

=

〈
σi
‖σi‖2

,
σj
‖σj‖2

〉
= cos(φij).

Therefore, the simplex conv({γi}) (the n vectors {γi} remain affinely independent) has all
of its vertices on the unit sphere and the angle between each pair of vertices is the same as
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in Ŝ. Thus, this simplex is rotationally congruent to Ŝ. This yields the following.

Lemma 5.6. Given a combinatorial simplex S, a simplex congruent to Ŝ can be computed in
time O(n2).

Proof. Given S, define the vertices γi as above. Computing ‖σi‖2 takes time O(n) and must
be done for each vertex. �

Given the relative ease with which we can transition from S to Ŝ, it is somewhat surprising
that it is much more difficult to transition from Ŝ to S, especially if the underlying graph
G is not given. The obvious tactic is, given the vertices {σ̂i}, to define vertices σ̂i

√
w(i),

which, since
√
w(i) = ‖σi‖2, have the same magnitude as σi. As above, the scaling does not

affect the angle between the vertices, and thus the simplex with these vertices is congruent
to S. However, it’s not clear how to obtain the value

√
w(i) from Ŝ. Using that 〈σ̂i, σ̂j〉 =

(w(i)w(j))−1/2 we can write

w(i)1/2 = −
∑
j 6=i

w(j)−1/2

/∑
j 6=i
〈σ̂i, σ̂j〉,

which yields a non-linear system of equations.

Of course, if we are given the graph then we have access to
√
w(i) and can compute

σ̂iw(i)1/2 in time O(n). The following result is then immediate.

Lemma 5.7. Given a graph G = (V,E,w) and its normalized simplex ŜG, a simplex congruent
to the combinatorial simplex SG can be computed in O(n2) time.

S and S+. Let us suppose that we can generate S+ from S (or vice versa) in time O(g(n)).
Note that for i < n,

λi =
λ

1/2
i ϕj(i)

λ
−1/2
i ϕj(i)

=
σi(j)

σ+
i (j)

, and ϕi(j) =
σj(i)

λ
1/2
i

, (5.1)

hence knowledge of {σi} and {σ+
i } yields knowledge of the eigendecomposition of the under-

lying graph G in O(n2) time (O(n) to determine all the eigenvalues and O(n2) to determine
the eigenvectors). The same argument holds mutatis mutandis for the normalized Laplacian.

Lemma 5.8. If a V-description of S+ (resp., Ŝ+) can be generated from a V-description of
S (resp., Ŝ) or vice versa in time O(g(n)), then Laplacian Eigendecomposion can be
solved in time O(g(n) + n2) for arbitrary weighted graphs. Consequently g(n) = Ω(nτ ).

An alternate way of seeing that constructing the inverse simplex from its dual is compu-
tationally challenging is to recall from Section 3.4 that S{i}c is contained in the hyperplane

{x ∈ Rn−1 : 〈x,σ+
i 〉 = −1/n} (Lemma 3.10) and that σ+

i is perpendicular to S{i}c (Lemma
3.5). Hence, computing the inverse simplex would imply that we had computed normal vec-
tors to n hyperplanes. The typical procedure for this involves computing an n×n determinant
and requires O(n3) time.
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We now consider transitioning between different descriptions of S and S+. Let us recall
that the H-description of S and S+ yield immediate insight into the vertices of its inverse
as S = ∩i{x : 〈x,σ+

i 〉 ≥ −1/n} and S+ = ∩i{x : 〈x,σi〉 ≥ −1/n} (Equations (3.8) and
(3.9)). Consequently, given a H-description of one of these simplices, the vertices of its inverse
are recoverable in quadratic time. This observation will be used several times and is worth
encoding.

Observation 5.1. Given an H-description of S (resp., S+) the vertices of S+ (resp., S) are
obtainable in quadratic time.

Proof. An H-description of S involves parameters u1, . . . ,un and β1, . . . , βn such that S =
∩i{x : 〈x,vi〉 ≥ βi} = {x : 〈x,−ui/(nβi) ≥ − 1

n}. Using Equation (3.6) (also written above)
shows that σ+

i = −ui/(nβi). Computing this for all i requires times O(n2) (we need to obtain
each coordinate). �

This immediately leads to the following bound on computing an H-description from a
V-description.

Lemma 5.9. Suppose that in time t(n) we can compute an H-description of S (resp., S+)
given its V-description. Then a V-description of S+ (resp., S) is recoverable in time t(n) +
O(n2), implying by Lemma 5.8 that t(n) = Ω(nτ ).

We also note that a consequence of the relationship between the vertices of S and the
H-description of S+ is that given the V-description of S or S+, we have immediate—that is,
O(1) time—access to the H-description of its inverse.

A similar result holds for transitioning between the H-description of the combinatorial
simplices. The argument runs as usual: Given an H-description of S, suppose we can gen-
erate an H-description of S+ in time t(n). We can obtain the vertices {σ+

i } from the H-
description of S, and the vertices {σi} from the H-description of S+. Using these, we can
then obtain the eigendecomposition of G in time O(n2). That is, we can solve Laplacian
Eigendecomposion in time t(n) +O(n2) yielding that t(n) = Ω(nτ ).

Lemma 5.10. Generating an H-description of SG given an H-description of S+
G , and vice

versa, requires time Ω(nτ ).

Between G and S or Ŝ. Similar lower bounds hold in this case. First, suppose that we
obtain a V-description of SG from G. Notice that

n−1∑
i=1

σi(j)
2 = λj

n−1∑
i=1

ϕj(i)
2 = λj

(
1− 1

n

)
,

so

λj =

∑n−1
i=1 σi(j)

2

1− 1/n
,

which can be computed in O(n) time. Then, as per Equation (5.1), knowledge of the eigen-
values furnishes knowledge of the eigenvectors in O(n2) time. This implies that obtaining
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such a V-description requires Ω(nτ ) time. Running almost identical arguments for S+, Ŝ, or
Ŝ+ gives the following.

Lemma 5.11. If the V-description of the combinatorial simplex, the normalized simplex, or
their inverses can be generated from a graph G in O(g(n)) time, then Laplacian Eigende-
composion can be solved in time O(g(n) + n2) for arbitrary weighted graphs. Consequently
g(n) = Ω(nτ ).

The prospects are equally bleak for generating an H-description from G. The argument
is similar.

Lemma 5.12. Given a graph G suppose an H-description of S (resp., S+) can be generated
in time g(n). Then a V-description of S+ (resp., S) can be obtained in time O(g(n) + n2)
by Observation 5.1. Consequently, by Lemma 5.11, g(n) = Ω(nτ ).

The problem of generating the graph from various simplices is more complicated. We
note first that we can generate G from a V-description of S in cubic time. Given {σi} we
can compute the weight between vertex i and j as 〈σi,σj〉 = −w(i, j) which requires linear
time. Performing the computation for all pairs and thus obtaining all the edge information
takes O(n3).

It’s less clear whether cubic time is also a lower bound for generating G from the vertices
{σi}. Using the following observation, any algorithm which does so in sub-cubic time does
not compute one of the dot products 〈σi,σj〉.

Observation 5.2. Any algorithm which determines whether two vertices in Rn are orthogo-
nal requires Ω(n) time.

The proof is found in Appendix A.4. However, it seems possible (if unlikely) that an
algorithm could infer the edge weights of the graph without computing Ω(n2) dot products.
We leave the question as an open problem.

Between different descriptions of the simplices. Here we investigate the interplay
between the various different descriptions of the simplices. The arguments are largely similar
to those in the section on transitioning between S and S+.

The following is an immediate consequence of Lemma 3.23 and Observation 5.1. It applies
to all simplices.

Corollary 5.1. If T is a centred simplex in H-description, we can obtain a V-description
of T ∗ in quadratic time. In particular, given an H-description of the combinatorial simplex
SG (resp., inverse combinatorial simplex S+

G) of a graph G, a V-description of S+
G (resp.,

SG) is obtainable in quadratic time.

Due to the fact that Ŝ+
G is not the dual of ŜG, it is difficult to see how to obtain a similar

result for the normalized simplex.

Lemma 5.13. Generating a V-description of the simplex S given its H-description requires
time Ω(nτ ) for any S ∈ {SG,S+

G}.
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Proof. Consider SG; the argument is similar for S+
G . Suppose obtaining the V-description

takes time t(n). Due to the properties of the hyperplane representations, this yields access
to both sets of vertices ({σi} and {σ+

i }) in time t(n) + O(n2) (Observation 5.1). Using
Equation (5.1), this implies that we can obtain the eigenvalues and eigenvectors of G in
time O(n2), i.e., we can solve Laplacian Eigendecomposion in time t(n) +O(n2). Hence
t(n) = Ω(nτ ). �

Verification. We now turn to discussing the complexity of verifying whether a given sim-
plex is the simplex of graph. In time O(n2.3727) we can compute ΣtΣ. We can check whether
this is equal to LG for some G by verifying whether (i) ΣtΣ1 = 0, (ii) (ΣtΣ)(i, i) > 0 for
all i and (iii) (ΣtΣ)(i, j) ≤ 0 for all i 6= j. These three steps require time O(n3). We can
check whether ΣtΣ is equal to L̂G for some G by first ensuring, similarly to above, that
(iii) holds and that (ΣtΣ)(i, i) = 1 for all i. Then we compute the kernel of ΣtΣ in cubic
time by means of Gaussian elimination [KS99] to obtain a vector v equal to

√
wG (if indeed

ΣtΣ = L̂G) up to scaling. To determine whether v does represent valid weightings of the
vertices, we check whether (ΣtΣ)(i, j)v(j) is constant for all i. In this case ΣtΣ is equal to
the normalized Laplacian of some graph. This can also be done in cubic time. We therefore
see that we can verify whether a given simplex is the combinatorial or normalized simplex of
a graph in cubic time. It’s not clear whether it can be done faster, however.

Finally, we note that in cubic time we can check whether all the angles θij between the
faces T{i}c and T{j}c are non-obtuse, in which case T is the inverse simplex of some graph.

§5.4. Approximations

Here we are concerned with approximations of various sorts. We begin with an eye towards
the problem of dimensionality. Specifically, Theorem 3.1 yields simplices of dimension n− 1
for a graph on n vertices. In many application areas, graphs may have thousands to millions
of vertices. Working in a Euclidean space of this size can be unwieldy. Our first two sections,
therefore, attempt dimensionality reduction. The first considers the problem of reducing the
dimensionality of the simplex itself. The second considers low rank approximations of the
Laplacian which are shown to yield polytopes on n vertices in low dimensional spaces. We
see that, depending on the rank of the approximation and the eigenvalues of the Laplacian,
certain properties of this polytope approximate those of the simplex. As we will see, this
provides some theoretical justification for the recent work of Torres et al. [TCER19].

5.4.1. Dimensionality Reduction: S+

Assume we are given one of the simplices of a graph. The idea is to map each vertex to
a point in Rd, for d � n, while maintaining the general form of the simplex. By this we
mean that we’d like the distance between the new points to remain approximately as they
were. If possible, we’d also like the new, lower dimensional object (note that it won’t be a
simplex because there will be n points in Rd) to retain some of the properties which relate
it to the underlying graph. In particular, we’d like the gram matrix of the new points to
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approximate the gram matrix of the original set of points. As it turns out, a mapping
meeting both of these criteria exists and is computable in polynomial time. It will rely on
the Johnson-Lindenstrauss (JL) Lemma [JL84, DG03].

Theorem 5.2 (Johnson-Lindenstrauss). Let X ⊆ Rk be a set of n points, for some k ∈ N.
For any ε > 0 and d ≥ 8 log(n)ε−2 there exists a map gε : Rk → Rd such that

(1− ε)‖u− v‖22 ≤ ‖gε(u)− gε(v)‖22 ≤ (1 + ε)‖u− v‖22,

for all u,v ∈ X .

Now, let us suppose we have the vertices {σ+
i } of the inverse simplex (the same argument

could be run with any of the simplices). Let X = {σ+
i } ∪ {0}. Apply the JL Lemma to X

to obtain n+ 1 points in Rd, for d = O(log(n)/ε2). Let f be the mapping, e.g., σ+
i is sent to

f(σ+
i ). By JL, have

(1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖22,

for all x,y ∈ {σ+
1 , . . . ,σ

+
n ,0}. Apply a linear transformation to the points so that f(0)

coincides with the origin 0 ∈ Rd. Note that this does not affect the distances between
the points themselves, and does not damage the approximation. Update f to reflect this
transformation. For all i, j, let εi,j denote the true error of the mapping, i.e.,∥∥∥f(σ+

i )− f(σ+
j )
∥∥∥2

2
= (1 + εi,j)

∥∥∥σ+
i − σ

+
j

∥∥∥2

2
,

where |εi,j | ≤ ε. Define εi,0 similarly. Then,∥∥f(σ+
i )
∥∥2

2
=
∥∥f(σ+

i )− f(0)
∥∥2

2
= (1 + εi,o)

∥∥σ+
i

∥∥2

2
= (1 + εi,o)L+

G(i, i),

hence, ∥∥∥f(σ+
i )− f(σ+

j )
∥∥∥2

2
= 〈f(σ+

i )− f(σ+
j ), f(σ+

i )− f(σj+)〉

=
∥∥f(σ+

i )
∥∥2

2
+
∥∥∥f(σ+

j )
∥∥∥2

2
− 2〈f(σ+

i ), f(σ+
j )〉,

implying that

〈f(σ+
i ), f(σ+

j )〉 = −1

2

(
(1 + εi,j)

∥∥∥σ+
i − σ

+
j

∥∥∥2

2
− (1 + εi,o)L+

G(i, i)− (1 + εj,o)L+
G(j, j)

)
= −1

2
((1 + εi,j)r(i, j)− (1 + εi,o)L+

G(i, i)− (1 + εj,o)L+
G(j, j))

= −1

2
((1 + εi,j)(L

+
G(i, i)−L+

G(j, j)− 2L+
G(i, j))

− (1 + εi,o)L+
G(i, i)− (1 + εj,o)L+

G(j, j))

= (1 + εi,j)L
+
G(i, j) + ε(i, j),
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where

ε(i, j)
def
=

1

2
(εi,o − εi,j)L+

G(i, i) + (εj,o − εi,j)L+
G(i, j),

is an error term dictated by εi,j , εi,o and εj,o. Setting M = maxiL
+
G(i, i) we can bound the

error term via repeated applications of the triangle inequality:

|ε(i, j)| ≤ 1

2

(
|(εi,o − εi,j)L+

G(i, i)|+ |(εj,o − εi,j)L+
G(i, j|

)
≤ 1

2

(
[|εi,j |+ |εi,o|]L+

G(i, i) + [|εi,j |+ |εj,o|]L+
G(j, j)

)
≤ 1

2
(2εL+

G(i, i) + 2εL+
G(j, j)) ≤ 2εM,

since |εi,j |, |εi,o|, |εj,o| ≤ |ε|. Setting f(Σ+) = (f(σ+
1 ), . . . , f(σ+

n )) ∈ Rd×n, this approximation
implies that

L+
G −O(εM)I ≤ f(Σ+)tf(Σ+) ≤ L+

G +O(εM)I.

In other words, we can approximately recover the Gram matrix L+
G = Σ+Σ+ using the lower

dimensional matrix f(Σ+).

The JL mapping also maintains other approximate information of the graph. For example,
it is well-known that the effective resistance between two vertices is related to the probability
that this edge is in a random spanning tree as

reff(i, j) =
1

w(i, j)
Pr
T∼µ

[(i, j) ∈ T ],

where µ is the uniform distribution over all spanning trees [BP93]. Hence,∥∥∥f(σ+
i )− f(σ+

j )
∥∥∥2

2
∈ 1

w(i, j)

[
(1− ε), (1 + ε)

]
Pr
T∼µ

[(i, j) ∈ T ].

5.4.2. Dimensionality Reduction: LG

In Section 5.4.1, we asked how to reduce the dimension of the simplex while (approximately)
maintaining several of its properties. However, we might instead reduce the dimensionality
of the Laplacian. This section explores this prospect.

Let us suppose the we have obtained a low rank—k, say—approximation of LG, written
Lk. We might then ask several questions:

1. Is Lk still a gram matrix? That is, can Lk be written Σ̃
t
Σ̃ where Σ̃ is the vertex matrix

of some set of points, P = {p1, . . . ,p`}? If so, what is the relationship between Σ and
Σ̃, where Σ = Σ(SG) is the usual vertex matrix of the combinatorial simplex of G? If
Lk has rank k then P spans a subspace of dimension k and conv(P ) forms a polytope
in that space. What is the relationship between the geometry of conv(P ) and SG?

2. Is Lk useful in helping estimate properties of the simplex SG? For example, if one could
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bound the difference in the quadratic products of LG and Lk, this would imply (via
the results in Section 3.4) that we could estimate many of the properties of SG.

Of course, we have chosen to work with LG and SG for convenience; we could have asked
the same questions of L̂G and ŜG.

Let us consider the natural rank-k approximation to LG:

Lk
def
=

k∑
i=1

λkϕkϕ
t
k,

where we recall that we’ve ordered the eigenvalues as λ1 ≥ λ2 ≥ . . . λn−1 > λn = 0. Clearly
Lk has rank k. It is, moreover, a symmetric PSD matrix. Section 3.1 thus yields the

polytope Pk
def
= PLk associated with Lk. More explicitly, if Λk = diag(λ1, . . . , λn) is the

diagonal matrix containing the first k eigenvalues (meaning those associated with λ1, . . . , λk)
and Φk = (ϕ1 . . . ;ϕk), then Lk is the Gram matrix of the vertices described be the matrix

Σk = Λ
1/2
k Φt

k = (σ
(k)
1 , . . . ,σ

(k)
n ) where σ

(k)
i = (ϕ1(i)λ

1/2
1 , . . . ,ϕk(i)λ

1/2
k ). Let us emphasize

that we are using the subscript (k) to signify that these vertices are those belonging to Pk.

To summarize, the rank k approximation to LG, Lk yields an n-vertex polytope Pk ⊆ Rk.
Naturally, one would hope that Pk “approximates” various features of SG, as it is precisely
SG projected onto a particular k-dimensional subspace. The next few results demonstrate
that this is true under certain assumptions placed on the distribution of the eigenvalues.

The first property worth noticing is that Pk remains centred at the origin. Indeed,

c(Pk) = 1
nΣk1 = 1

nΛ
1/2
k Φt

k1 = 0k. Next, we might wonder whether the lengths of the
centroids to different faces are similar in SG and Pk. Fix U ⊆ [n] and compute

∣∣∣∣‖c(SG[U ])‖22 − ‖c(Pk[U ])‖22

∣∣∣∣ =
1

|U |2

∣∣∣∣χtUΣtΣχU − χtUΣt
kΣkχU

∣∣∣∣
=

1

|U |2

∣∣∣∣χtU (LG −Lk)χU
∣∣∣∣

=
1

|U |2

∣∣∣∣χtU( ∑
i∈[n−1]

λiϕiϕ
t
i −

∑
i∈[k]

λiϕiϕ
t
i

)
χU

∣∣∣∣
≤ 1

|U |2
n−1∑
i=k+1

|λiχtUϕiϕtχU |

=
1

|U |2
n−1∑
i=k+1

〈χU ,ϕi〉2,

where, by Cauchy-Schwarz, 〈χU ,ϕi〉2 ≤ ‖χU‖
2
2‖ϕi‖

2
2 = |U |2, hence∣∣∣∣‖c(SG[U ])‖22 − ‖c(Pk[U ])‖22

∣∣∣∣ ≤ n−1∑
i=k+1

λi ≤ λk+1(n− (k + 1)). (5.2)
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Thus, if λk is sufficiently small as a function of n and k, the lengths of the centroids are
approximately equal. We summarize with the following Lemma.

Lemma 5.14. If λk+1 = o((n− k)−1), then

∣∣∣∣‖c(SG[U ])‖22 − ‖c(Pk[U ])‖22

∣∣∣∣ = o(1).

Proof. Assume λk = o((n− k)−1) and apply Equation (5.2). �

Remark 5.3. The above result should seem intuitively plausible. How well Lk approximates
LG relies precisely on the size of λk. We should thus expect the same to be true of Pk and
SG.

Next, we investigate the relative distances between the vertex vectors. The difference in
distances between the vectors of SG and Pk is

∣∣∣∣‖σi − σj‖22 − ∥∥∥σ(k)
i − σ

(k)
j

∥∥∥2

2

∣∣∣∣ =

∣∣∣∣∣∣
∑

`∈[n−1]

(σi(`)− σj(`))2 −
∑
`∈[k]

(σi(`)− σj(`))2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

`∈[n−1]

λ`(ϕ`(i)−ϕ`(j))2 −
∑
`∈[k]

λ`(ϕ`(i)−ϕ`(j))2

∣∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
`=k+1

λ`(ϕ`(i)−ϕ`(j))2

∣∣∣∣∣
≤ λk+1

n−1∑
`=k+1

|ϕ`(i)−ϕ`(j)|2.

The goal is thus to bound the final summation in terms of some function of n or k, so that

we may provide sufficient conditions on λk+1 in order for
∥∥∥σ(k)

i − σ
(k)
j

∥∥∥2

2
to approximate

‖σi − σj‖22. We proceed as follows.

n−1∑
`=k+1

|ϕ`(i)−ϕ`(j)|2 =

∣∣∣∣ n−1∑
`=k+1

|ϕ`(i)−ϕ`(j)|2
∣∣∣∣

=

∣∣∣∣ n−1∑
`=k+1

ϕ`(i)
2 +ϕ`(j)

2 − 2ϕ`(i)ϕ`(j)

∣∣∣∣
≤

n−1∑
`=k+1

ϕ`(i)
2 +

n−1∑
`=k+1

ϕ`(j)
2 + 2

∣∣∣∣ n−1∑
`=k+1

ϕ`(i)ϕ`(j)

∣∣∣∣
≤

n−1∑
`=k+1

ϕ`(i)
2 +

n−1∑
`=k+1

ϕ`(j)
2 + 2

( n−1∑
`=k+1

ϕ`(i)
2

n−1∑
m=k+1

ϕm(j)2

)1/2

≤
∑
`∈[n]

ϕ`(i)
2 +

n−1∑
`∈[n]

ϕ`(j)
2 + 2

( n−1∑
`∈[n]

ϕ`(i)
2

n−1∑
m=k+1

ϕm(j)2

)1/2

. (5.3)
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Now, recall that due to double orthogonality of the eigenvector matrix we have

n∑
`=1

ϕ`(i)ϕ`(j) = δij .

The right hand side of (5.3) is therefore equal to 6. Consequently, combining the previous
few equations yields ∣∣∣∣‖σi − σj‖22 − ∥∥∥σ(k)

i − σ
(k)
j

∥∥∥2

2
≤ 6λk+1 = O(λk+1).

Lemma 5.15. If λk+1 = o(1) then

∣∣∣∣‖σi − σj‖22 − ∥∥∥σ(k)
i − σ

(k)
j

∥∥∥2

2
= o(1).

Summarizing, we see that under assumptions on the sizes of the eigenvalues (which relates
directly to how good of an approximation Lk is to LG), the features of the polytope Pk will
approximate those of SG. As we stated previously, this could help explain in part the success
of the experiments run by Torres et al. [TCER19] on a new Laplacian eigenmap method. In
their work, they assume they are given Pk and attempt to reconstruct certain graph features,
most notably its connectivity. Since the connectivity of a graph is related to the centroids of
SG (Section 3.4), if k is sufficiently small then the centroids Pk will approximately recover
the edge relations.

5.4.3. Distance Matrix of S+
G

We end with a brief section which demonstrates that we can leverage several results from the
literature on Laplacian optimization to approximate the distance matrix of S+

G . An elegant
result of Spielman and Srivastava [SS11] allows us to build a matrix which approximately
represents the effective resistances.

Theorem 5.3 ([SS11]). For any ε > 0 and graph G = (V,E,w), there exists an algorithm
which computes a matrix R̃ ∈ RO(log(n)ε−2)×n such that

(1− ε)r(i, j) ≤
∥∥∥R̃(χi − χj)

∥∥∥2

2
≤ (1 + ε)r(i, j).

The algorithm runs in time Õ(|E| log(r)/ε2), where

r =
maxi,j w(i, j)

mini,j w(i, j)
.

Therefore, given a graph G = (V,E,w), we use the algorithm of Theorem 5.3 to compute

all the approximate distances
∥∥∥σ+

i − σ
+
j

∥∥∥2

2
= reff(i, j) in time

Õ(|E| log(r)/ε2) +O(|E| log(n)/ε2) = Õ(|E|/ε2),

assuming r = O(1). Note that we can compute a single effective resistance in timeO(log n/ε2),
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since it involves simply computing the `2 norm the vector R̃(χi − χj) which is simply the

difference of two columns of R̃.

Ideally, after computing R̃, we’d like to compute vertices which (approximately) obey
the distances represented by R̃ (note that R̃ may not be a valid distance matrix since it
is only an approximation). The usual approach to generating points from a (true) distance
matrix D is Multidimensional Scaling (MDS) [KW78]. Typically, practitioners are interested
in generating points which approximately obey the pairwise distance in D, but lie in a lower
dimensional space. While this sounds promising, MDS relies on the the eigendecomposition of
the distance matrix which requires cubic time. Of course, this is too slow for our purposes: If
we allow cubic time, then we can simply perform an eigendecomposition of LG and recover the
vertices of S+

G exactly. Moreover, it’s unclear whether MDS works when the given distances
are only approximate. We therefore leave the reader with the following open problem:

Problem: Given an approximate Euclidean distance matrix D̃ and a parameter ε > 0, can
a set of vertices be computed which obey the distances given by D̃ within an additive factor
of ε in sub-cubic time?
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Chapter 6

Conclusion

One must imagine Sisyphus happy.

— Albert Camus, The Myth of Sisyphus

This dissertation has expounded and expanded upon the graph-simplex correspondence, a
relationship which associates with each connected, weighted graph G four simplices: SG, S+

G

(the combinatorial simplices), ŜG, and Ŝ+
G (the normalized simplices). Presenting and build-

ing on the previous work of Fiedler [Fie93, Fie11] and Devriendt and Van Mieghem [DVM18],
we have seen the synthesis of the geometry of these simplices with properties of the graph.
At a high level:

1. The geometry of SG is closely related to the connectivity of G, the geometry of S+
G is

related the effective resistance of G. The squared volume of SG is proportional to the
number (total weight) of spanning trees in G, to which the squared volume of S+

G is
inversely proportional;

2. The volume of the faces of S+
G are closely related to the entries of the Laplacian matrix

and consequently to the length of the vertices of SG;

3. The Steiner Ellipsoids of SG and S+
G are determined by the eigenvalues of LG. For any

of a graph’s simplices, the ratio of the volume of its Steiner Ellipsoid to its own volume
is a constant.

More broadly, we have seen that graphs and simplices are related by elegant block matrix
equations which can be used to examine the structure of both objects. The correspondence
also provided the insight used to give a general formula for both the volume of a simplex and
its Steiner Ellipsoid in terms of the dual simplex. Additionally, it helped provide intuition
concerning the general behaviour of the dual simplex.

On the more applied side, we explored the algorithmic underpinnings of the correspon-
dence and established that

3. transitioning between various objects in the correspondence (exactly) is lower bounded
by the complexity of computing an eigendecompositon;

4. the correspondence can be used to help classify the computational complexity of geo-
metric problems; and
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5. there exist low dimensional embeddings of the simplices which approximately maintain
their Gram matrix relations, and low rank approximations to the Laplacian yielding
low dimensional polytopes approximating the geometry of SG and S+

G .

The main goal, however, was not to achieve any particular result but rather to demonstrate
the utility of the graph-simplex correspondence as a tool with which to analyze graphs and
simplices. We hope to have succeeded in our role as evangelist and convinced the reader to
include the correspondence in their mathematical toolkit. We end by listing several possible
directions for future work.

§6.1. Open Problems and Future Directions

We believe there are several exciting avenues for further research.

• In Section 5.2 we gave several examples of how various graph theoretic problems trans-
late to the simplex and vice versa, and examined what implications this had for compu-
tational complexity. Due to time and space constraints we were unable to fully explore
this area; it seems likely that we have left many results untapped. For example, we
mostly explored how specific NP-complete graph problems translated to NP-complete
polyhedral problems. It could be fruitful to explore the converse. More importantly
for possible applications, problems which are “easy” (polynomial time solvable) in one
domain may have analogues in the other, which could result in new efficient algorithms.

• While we gave implicit conditions on the dual of ŜG and Ŝ+
G , we were unable to give

their explicit equations. It would be desirable to discover what these are.

• In Section 5.4.3 we presented the problem of embedding an (approximate) distance
matrix in sub-cubic time. This question seems like an interesting one in general, even
without considering our specific motivation. Related to this is the connection between
S+
G and the resistive polytope, RG, given in Section 4.5. Given that L+

G is a more widely
studied object than S+

G , it’s possible that knowledge concerning the pseudoinverse can
be leveraged to uncover properties of, or to optimize over, RG. This could translate to
similar results for S+

G .

• One application of the correspondence that we explored only briefly was that of proving
the existence of certain features in simplices and graphs. It seems possible that there
are many results along these lines. For example, Alev et al. recently demonstrated
that any graph can be partitioned into subgraphs such that each subgraph has a low
maximum effective resistance and only a fraction of the total edges lie between the
subgraphs [AALG17]. This demonstrates that the vertices of any hyperacute simplex
can be partitioned into sets such that the maximum pairwise distance between the
vertices in any set is “small” and many vertices in distinct sets are orthogonal, or
approximately so.

• In a similar vein, it would be interesting to explore under what conditions such results
generalize to all simplices. Are there, for instance, necessary and sufficient conditions
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on when structural properties of hyperacute simplices generalize to all simplices? If so,
then when studying such properties it would be sufficient to restrict one’s attention to
inverse simplices of graphs.

• Our study of random walks in simplices was severely limited in scope and insight. The
natural use of probability distributions over the nodes as barycentric coordinates, how-
ever, remains intriguing. Additionally, the connection between the normalized Lapla-
cian and random walks suggests this may be a promising approach for generating new
insights into the dynamics of random walks, and stochastic processes on graphs more
generally.

Finally, there are two possible abstractions of the graph-simplex correspondence which
suggest themselves.

The first comes from considering the natural generalization of simplices to simplicial
complexes. A simplicial complex is a collection of simplices S such that (i) for every T ∈ S,
each face of T is also in S and (ii) for all T1, T2 ∈ S, T1 ∩ T2 is a face of both T1 and T2.
It would be interesting to explore whether one can associate with each simplicial complex a
graph or set of graphs.

The second involves exploring more fully the mapping we introduced in Section 3.1 which
associates a polytope of rank d with each PSD matrix of rank d. Is such geometry a useful
way of thinking about these matrices?
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Omitted Proofs

§A.1. Chapter 2

Proof of Observation 2.1. We begin by proving uniqueness. Suppose {ui} and {wi} are both

biorthogonal bases of {vi}. We will show that ui = wi for all i. Fix i ∈ [n]. By independence,

span(v1, . . . ,vi−1,vi+1, . . . ,vn) is a hyperplane—that is,

dim span(v1, . . . ,vi−1,vi+1, . . . ,vn)⊥ = 1.

(Recall that we are working in Rn and with bases thereof.) Both ui and wi are orthogonal

to this hyperplane (since they orthogonal to vj for all j 6= i), thus are either parallel or anti-

parallel. Therefore, there exists some α ∈ R such that vi = αwi. By definition, 〈vi,ui〉 =

〈vi,wi〉 = 1, hence 〈vi, αwi〉 = 〈vi,wi〉 implying that α = 1. This demonstrates that ui = wi

for all i.

Next we demonstrate that Qt = M−1 where Q = (u1, . . . ,un) and M = (v1, . . . ,vn).

By the orthogonality relationships of dual bases, we have

QtM =


ut1
...

utn

(v1 . . . vn

)
=


〈u1,v1〉 . . . 〈u1,vn

...
. . .

...

〈un,v1〉 . . . 〈un,vn〉

 = In.

Observing that M−1 exists by independence of {v1, . . . ,vn} we apply it to both sides of the

above to obtain Qt = M−1. �

Proof of Lemma 2.2. It suffices to show that dim kerM = dim kerM tM , by rank-nullity.

Clearly kerM ⊆ kerM tM since Mf = 0 implies M tMf = 0. Conversely, if M tMf = 0

then 0 = f tM tMf = ‖Mf‖22, implying that Mf = 0. �

Proof of Lemma 2.5. Put Q =
∑k

i=1 λ
−1
i ϕiϕ

t
I . Since the pseudoinverse is unique, it suffices

to show that Q satisfies the condition of Definition 2.1. Since the eigenvectors are orthonormal
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by assumption, ϕtiϕj = δi,j for all i, j. Hence,

MQ =

k∑
i=1

λiϕiϕ
t
i

k∑
j=1

λ−1
j ϕjϕ

t
j =

k∑
i,j=1

λiλ
−1
j ϕiϕ

t
iϕjϕ

t
j

=
k∑
i=1

λiλ
−1
i ϕiϕ

t
iϕiϕ

t
i =

k∑
i=1

ϕiϕ
t
i = QM .

Performing a similar computation then demonstrates that

MQM =
k∑
i=1

ϕiϕ
t
i

k∑
j=1

λjϕjϕ
t
j =

k∑
i,j=1

λiϕiϕ
t
iϕjϕ

t
j =

k∑
i=1

λiϕiϕ
t
i = M ,

and similarly, QMQ = Q. Moreover, ϕiϕ
t
i(k, `) = ϕi(k)ϕi(`) = ϕi(`)ϕi(k) = (ϕiϕ

t
i)
t(k, `)

implying that ϕiϕ
t
i = (ϕiϕ

t
i)
t, so

(QM)t = (MQ)t =

( k∑
i=1

ϕiϕ
t
i

)t
=

k∑
i=1

(ϕiϕ
t
i)
t =

k∑
i=1

ϕiϕ
t
i = MQ = QM ,

so both required conditions hold, and we conclude that Q = M+. �

Proof of Lemma 2.7. By definition

RG(i, j) = χtiL
+
Gχi + χtjL

+
Gχj − 2χtiL

+
Gχj = L+

G(i, i) +L+
G(j, j)− 2L+

G(i, j),

whence

RG = 1ut + u1t − 2L+
G,

(where we recall that u = diag(L+
G(i, i))). From here we see that xtRGx = −2xtL+

Gx for

any x ∈ span(1)⊥. Therefore,

L+
G(i, j) = χtiL

+
Gχj

=

(
χi −

1

n
1

)t
L+
G

(
χj −

1

n
1

)
= −1

2

(
χi −

1

n
1

)t
RG

(
χj −

1

n
1

)
=

1

2n

( ∑
k∈[n]

reff(i, k) + reff(j, k)

)
− 1

2
reff(i, j)− RG

n2
. �

Proof of Lemma 2.6. Focus for the moment on the combinatorial Laplacian LG, with eigen-

values λ1 ≥ λ2 ≥ · · · ≥ λn and corresponding orthonormal eigenfunctions ϕ1, . . . ,ϕn. To see
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the non-negativity of the eigenvalues, we appeal to the incidence matrix of G, BG. This is

defined in Appendix B. It is easily verified that LG = Bt
GBG. Therefore, for λ an eigenvalue

with (unit) eigenvector ϕ,

λ = λ〈ϕ,ϕ〉 = 〈λϕ,ϕ〉 = 〈LGϕ,ϕ〉 = 〈Bt
GBGϕ,ϕ〉 = 〈BGϕ,BGϕ〉 = ‖BGϕ‖22 ≥ 0.

Now, suppose Lϕ = 0. Then ϕtLϕ = L(ϕ) = 0, which implies that ϕ(i) = ϕ(j) for all

i, j ∈ V`. We can immediately see that any vector in span(1) satisfies this condition. On the

other hand, consider a non-zero vector ϕ which is orthogonal to 1. Then

0 =
k∑
i=1

〈ϕ,χVi〉 = 〈ϕ,1〉 =
k∑
i=1

ϕ(i),

implying that there exists ` ∈ [k] such that ϕ(i) 6= ϕ(j) for some i, j ∈ V`. Hence, L(ϕ) > 0

and so Lϕ 6= 0. Therefore, there are no other linearly independent eigenfunctions corre-

sponding to the zero eigenvalue. We have thus shown that 0 is an eigenvalue of L with

multiplicity one, and ker(L) = span(1).

A similar analysis holds for the normalized Laplacian. Using the same argument but

replacing B with B̂ = W−1/2BW−1/2 demonstrates that its eigenvalues are non-negative.

Its kernel can be determined as follows. For any eigenfunction ϕ of L corresponding to the

zero eigenvalue, observe that

L̂W 1/2ϕ = W−1/2LW−1/2W 1/2ϕ = W−1/2Lϕ = 0,

so W 1/21 lies in the kernel of L̂. Conversely, if ϕ ∈ ker(L̂), define ϕ′ such that ϕ = W 1/2ϕ′

(this is possible because W 1/2 is diagonal—we simply factor out
√
w(i) from ϕ(i) to obtain

ϕ′(i)). Then

0 = L̂ϕ′ = W−1/2LW−1/2W 1/2ϕ = W−1/2Lϕ,

so Lϕ = 0 (since w(i) > 0 for all i). That is, each element in the kernel of L̂ takes the form

W 1/2ϕ for ϕ ∈ ker(L). We conclude that ker(L̂) = span(
√
w. �

Proof of Lemma 2.8. Throughout the proof let R = Rtot
G . We need to show that

−1

2

(
0 1tn

1n R

)(
∆tLG∆ + 4

n2R −(LG∆ + 2
n1)t

−(LG∆ + 2
n1) LG

)
= I.

Multiplying out the left hand side, the top left-hand corner of the resulting block matrix
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is

−1

2
(1tLG −

2

n
1t1) = 1,

since 1tLG = 1tLtG = 0. Likewise the top-right hand corner is 0. The bottom left-hand

corner is

− 1

2

(
1∆tLG∆ +

4

n2
R1−RLG∆− 2

n
R1

)
, (A.1)

where, using that R = ∆1t + 1∆t − 2L+
G and 1tLG = 0,

RLG = 1∆tLG − 2

(
I− 1

n
J

)
. (A.2)

Observing that ∆(i) = L+
G(i, i) = 1

n(R1)(i)−R/n2 due to Lemma 2.7, write

∆ =
1

n
R1− R

n2
1 =

1

n
R1− 1

2n2
JR1,

(where we’ve used that R = 1
21tR1). After some re-arranging, Equation (A.1) thus becomes

1

n
R1− 2

n2
R1−

(
I− 1

n
J

)
∆ =

1

n
R1− 2

n2
R1−

(
I− 1

n
J

)(
1

n
R1− 1

2n2
JR1

)
=

1

n
R1− 1

n2
JR1− 1

n
R1 +

1

n2
JR1 +

1

2n2
JR1− 1

2n3
J2R1

= 0,

using that J2 = nJ. Finally, again using (A.2), the bottom right-hand side is

1

2
1∆tLG +

1

n
11t − 1

2
RLG =

1

n
J +

(
I− 1

n
J

)
= I.

This demonstrates that (A.1) holds. We now show that LGRLG = −2LG and RLGRx =

−2Rx for all x ∈ span(1)⊥, which will complete the proof. Applying Equation (A.2) we have

LGRLG = LG1∆tLG = −2LG +
2

n
LG11t = −2LG.

In the same way as (A.2) was derived, we see that

LGR = LG∆1t − 2

(
I− 1

n
J

)
,

and so

RLGR =

(
RLG∆t +

2

n
1

)
1t − 2R,

as desired. �
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Proof of Lemma 2.9. Suppose that {xj−xi}i 6=j is not linearly independent, and let {βi} (not

all zero) be such that
∑

i 6=j βi(xj − xj) = 0. Putting β =
∑

i βi, we can write this as

∑
i 6=j

βi
β
xi − xj = 0.

But these coefficients sum to 0, i.e.,
∑

i 6=j βi/β − 1 = 1 − 1 − 0, so {xi} are not affinely

independent. Conversely, suppose that
∑

i αixi = 0 where
∑

i αi = 0 and αk 6= 0 for some

k. Then,

0 =
∑
i

αixi =
∑
i 6=j

αixi + αjxj =
∑
i 6=j

αixi −
∑
i 6=j

αixj =
∑
i 6=j

αi(xi − xj),

implying that {xj − xi}i 6=j is not linearly independent. �

Proof of Lemma 2.10. By Lemma 2.9, the vectors ζi = xi−xn, i < n are linearly independent

and span Rn−1. Therefore, there exist real numbers αi, i < n with y − xn =
∑

i<n αiζi.

Putting αn = 1−
∑

i<n αi, we have y =
∑

i<n αiζi + xn =
∑

i<n αixi + (1−
∑

i<n αi)xn =∑
i∈[n] iαixi. It’s immediate that

∑
i αi = 1. �

Proof of Claim 2.1. Suppose not and let {βi} be such that
∑

i βiγ
∗
i = 0 with

∑
i βi = 0.

Then,

0 =
∑
i

βiγ
∗
i =

n−1∑
i=1

βiγ
∗
i −

( n−1∑
i=1

βi

) n−1∑
j=1

γ∗j =
n−1∑
i=1

(
βi −

n−1∑
j=1

βj

)
γ∗i ,

implying that {γ∗i }
n−1
i=1 is linearly dependent; a contradiction. �

Proof of Observation 2.2. Let {vi}i∈[n] be a set of vectors and let U ( [n] be a proper subset

of [n]. If {vi}i∈U is not affinely independent, then there exists {αi}j∈U not all zero such that∑
i∈U αivi = 0 and

∑
i αi = 0. Taking αj = 0 for j ∈ U c implies that

∑
i∈[n] αivi = 0 while

maintaining that
∑

i αi = 0. Hence {vi}i∈[n] is not affinely independent. �

Proof of Lemma 2.11. We need to show that 〈γi,uj〉 = δij for all i, j 6= k. For i 6= n, we

have

〈γi,σj − σk〉 = 〈γi,σj − σn + σn − σk〉

= 〈γi,σj − σn〉 − 〈γi,σk − σn〉

= δij − δik = δij ,
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since i 6= k. For i = n meanwhile,

〈γn,σj − σk〉 = −
n−1∑
`=1

〈γ`,σj − σn + σn − σk〉

=
n−1∑
`=1

〈γ`,σj − σn〉 −
n−1∑
`=1

〈γ`,σk − σn〉 =
∑
`

(δj` − δk`) = 0. �

Proof of Lemma 2.14. Let Σ = Σ(S) = (γ1, . . . ,γn) and Σ∗ = Σ(S∗) = (γ∗1, . . . ,γ
∗
n). Let

Σx ∈ SU and Σ∗y1,Σ
∗y2 ∈ S∗Uc , where y1 and y2 are barycentric coordinates. Fix k ∈ U c.

We need to show that 〈Σx,Σ∗y1 −Σ∗y2〉 = 0. First, using ‖yi‖ = 1, i = 1, 2, write

Σ∗y1 −Σ∗y2 =
∑
j∈Uc

γ∗j (y1(j)− y2(j))

=
∑

j∈Uc\{k}

γ∗j (y1(j)− y2(j)) + γ∗k(y1(k)− y2(k))

=
∑

j∈Uc\{k}

γ∗j (y1(j)− y2(j))− γ∗k
( ∑
j∈Uc\{k}

y1(j)− y2(j)

)
=

∑
j∈Uc\{k}

(γ∗j − γ∗k)(y1(j)− y2(j)).

Now, by definition, 〈γi,γ∗j − γ∗k〉 = δi,j for i, j 6= k so it follows that

〈Σx,Σ∗(y1 − y2)〉 =
∑
i∈U

x(i)〈γi,Σ∗(y1 − y2)〉

=
∑
i∈U

x(i)
∑

j∈Uc\{k}

〈γi,γ∗j − γ∗k〉(y1(j)− y2(j))

=
∑
i∈U

x(i)
∑

j∈Uc\{k}

δij(y1(j)− y2(j)) = 0,

since U c \ {k} ∩ {i} = ∅. �

§A.2. Chapter 3

Proof of Lemma 3.4. Let us simply perform the calculation:

(LG×Hfuv)(ij) = degG×H((i, j))fuv(ij)−
∑

(k,`)∈∂((i,j))

fuv(k`)

= (degG(i) + degH(j))ϕu(i)ψv(j)−
∑

(k,`)∈∂G×H((i,j))

ϕu(i)ψv(j)
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= (degG(i) + degH(j))ϕu(i)ψv(j)−
∑

k∈∂G(i)

ϕu(k)ψv(j)−
∑

`∈∂H(j)

ϕu(i)ψv(`)

=

(
degG(i)ϕu(i)−

∑
k∈∂G(i)

ϕu(k)

)
ψ(j)

+

(
degH(j)ψv(j)−

∑
`∈∂H(j)

ψv(`)

)
ϕu(i)

= (LGϕu)(i) ·ψv(j) + (LHψv)(j) ·ϕu(i)

= λuϕu(i)ψv(j) + µvψv(j)ϕu(i)

= (λu + µv)ϕu(i)ψv(j) = (λu + µv)fuv(ij),

as desired. �

Proof of Lemma 3.9. Put E = {x ∈ Rn−1 : xtΣ+ + 1t/n ≥ 0t}. First we show that E ⊆ S.

Since rank(Σ) = n− 1, it follows that given any x ∈ E (indeed, any x ∈ Rn−1) we can write

x = Σy for some y ∈ Rn. Letting ȳ = n−1
∑

i y(i) be the mean of the vector y, compute

xtΣ+ = ytΣtΣ+ = yt(I− 11t/n) = yt − ȳ1t.

If x ∈ E the above implies that

yt − ȳ1t + 1t/n ≥ 0t.

Moreover, since Σ1 = 0, we have x = Σy = Σ(y − ȳ1 + 1/n). Noticing that

〈y − ȳ1 + 1t/n,1〉 = nȳ − nȳ + 1 = 1,

demonstrates that the vector ỹ = y − ȳ1 + 1t/n is a barycentric coordinate for x, and so

x ∈ S.

Conversely, for x ∈ S let y be its barycentric coordinate. Then

xtΣ+ +
1t

n
= yt

(
I− J

n

)
+

1t

n
= yt − 1t

n
+

1t

n
= yt ≥ 0t,

hence S ⊆ E. This completes the proof. �

§A.3. Chapter 4

Proof of Lemma 4.5. Before proceeding to the main part of the proof, we recall the equation

of the determinant of a matrix in terms of its co-factor expansion. Let Q ∈ Rm×m. For any
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i, j ∈ [m], let Q−i,−j denote the matrix obtained by removing row i and column j from Q.

The cofactor expansion along row i ∈ [n] is the relationship

det(Q) =

m∑
k=1

(−1)i+kQ(i, k) det
(
Q−i,−k

)
,

while the cofactor expansion along column j ∈ [n] reads

det(Q) =

m∑
k=1

(−1)j+kQ(k, j) det
(
Q−k,−j

)
.

We may now proceed with the argument. Let D be the distance matrix of T , and recall

that D = R where R is the effective resistance matrix of the graph G (since T is hyperacute

by assumption). Set

r = −
(
LG∆ +

2

n
1

)
, α = ∆tLG∆ + 4Rtot

G /n2.

Combining Lemma 4.4 and Equation (2.18), write

vol(T )2 =
(−1)n

((n− 1)!)22n−1
det

−2

(
α r

r LG

)−1


=
−4

((n− 1)!)2

[
det

(
α r

r LG

)]−1

,

where we’ve employed the basic determinant properties det(βQ) = βm det(Q) for Q ∈ Rm×m

and det
(
Q−1

)
= det(Q)−1 forQ invertible. We are thus left with task of evaluating the above

determinant. We claim it is equal to −4ΓG, which will complete the proof. Put

Q =

(
α r

r LG

)
∈ R(n+1)×(n+1).

First we carry out a cofactor expansion along the first row, which yields

det(Q) = α det(LG) +
n+1∑
j=2

(−1)1+jr(j − 1) det
(
Q−1,−j

)
=

n∑
j=1

(−1)jr(j) det
(
Q−1,−j+1

)
.

For each j, carrying out a cofactor expansion of the first column of Q−1,−j+1 yields

det
(
Q−1,−j+1

)
=

n∑
k=1

(−1)k+1r(k) det(L−k,−j),
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hence,

det(Q) = −
n∑
j=1

n∑
k=1

r(j)r(k)(−1)j(−1)k det(L−k,−j) = −
n∑
j=1

n∑
k=1

r(j)r(k)ΓG,

by Theorem 2.2. It remains only to note that −
∑n

j,k=1 r(j)r(k) = −(
∑

j r(j))
2 = −〈1, r〉2 =

−4 by definition of r. �

Proof of Lemma 4.13. We begin by computing the left hand side of the matrix equation. Note

that for connected trees on n nodes, there are precisely n − 1 edges. Therefore, 1td − 2n =∑
i deg(i) − 2n = 2|E| − 2n = −2, by the handshaking lemma. Since 1tLT = 0, it follows

that the top row of the resulting matrix is as desired. Next, let us consider the term

∑
i∼j

1

w(i, j)
+ ST (d− 21),

which we need to demonstrate is equal to 0. Consider the k-th row of the above vector,

∑
i∼j

1

w(i, j)
+
∑
`∈[n]

ST (k, `)(deg(`)− 2). (A.3)

Denote the sum on the right by S. Fix some (i, j) ∈ E and let us consider how many

occurrences of 1/w(i, j) there are in S. Since T is a tree, we may partition V into two

disjoint sets of vertices, Vi and Vj (so that Vi ∪ Vj = V and Vi ∩ Vj = ∅) where i ∈ Vi,

j ∈ Vj , and T [Vi], T [Vj ] are both connected trees. That is, the original graph T is a union

of T [Vi], T [Vj ] and the edge (i, j) which connects them. Now, the edge (i, j) will be on the

path between two vertices if and only if one lies in Vi and the other in Vj . (Again, this is

due to the fact that T is a tree—there is thus no other path between the components Vi

and Vj other than via (i, j).) Assume without loss of generality that k ∈ Vi. Then, by the

above argument, 1/w(i, j) appears only in those terms ST (k, `) with ` ∈ Vj . Consequently,

collecting and summing over all the terms 1/w(i, j), we may rewrite S as

∑
i∼j

1

w(i, j)

∑
`∈Vj

(degT (`)− 2).

Since T [Vj ] is a tree,
∑

`∈Vj degT [Vj ](`) = 2(|Vj | − 1) (using the same arguments as above).

Moreover, degT [Vj ](`) = degT (`) for every ` ∈ Vj \ {j}, since no other vertex besides j shares

an edge with any vertex in Vi. On the other hand, since (i, j) ∈ E, degT [Vj ](j) = degT (j)−1.

Hence, ∑
`∈Vj

(degT (`)− 2) = 2(|Vi| − 1) + 1− 2|Vi| = −1.
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We have thus shown that S = −
∑

i∼j 1/w(i, j), and so (A.3) is indeed 0. Finally, we consider

the term 1td − 211t + STLT , which we need to show is −2I. Let us expand the (k, `)-th

component of this matrix:

deg(`)− 2 +
∑
i∈[n]

ST (k, i)LT (`, k) = deg(`)− 2 + ST (k, `)LT (`, `) +
∑
i 6=`
ST (k, i)LT (`, k)

= deg(`)− 2 + ST (k, `)w(`)−
∑
i∈δ(`)

ST (k, i)

= deg(`)− 2 +
∑
i∈δ(`)

w(i, `)(ST (k, `)− ST (k, i)).

For k = `, we have ST (k, `) = 0 and ST (k, i) = ST (`, i) = 1/w(i, `). It follows that the above

sum is −2, as desired. Now consider k 6= `. Fix i ∈ δ(`) and let P = (k = v1, . . . , vr = `) be

the unique path between k and `. First, suppose that i ∈ P so that i = vr−1. Then ST (k, `)−
ST (k, i) =

∑r−1
s=1 1/w(vs, vs+1)−

∑r−2
s=1 1/w(vs, vs+1) = 1/w(vr−1, vr) = 1/w(i, `). Otherwise,

if i ∈ P then the unique path between i and k in T is P ∪ {`} = (v1, . . . , vr, i). In this case

ST (k, `) − ST (k, i) =
∑r−1

s=1 1/w(vs, vs+1) − (
∑r−1

s=1 1/w(vs, vs+1) + 1/w(i, `)) = −1/w(i, `).

Finally, we note that there can be at most one neighbour of ` which is on the shortest path

between k and `. Therefore,
∑

i∈δ(`)w(i, `)(ST (k, `)−ST (k, i)) = 1−(|δ(`)|−1) = 2−deg(`),

demonstrating that the (k, `)-th component is zero, completing the proof. �

Proof of Lemma 4.14. Let F+ be as above and let F−
def
= [n] \ F+ = {i : f(i) < 0}. Observe

that

‖f‖1 =
∑
i

|f(i)| = 〈χF+ − χF− , f〉 = (χF+ − χF−)tf = (χF+ − χF−)t(I− J/n)f,

where the last inequality follows since f is orthogonal to 1 by assumption. Using the pseu-

doinverse relation (3.4), we can continue as

‖f‖1 = (χF+ − χF−)t(Σ+)tΣf

= (χF+ − 1 + χF+)t(Σ+)tΣf

= 2χtF+(Σ+)tΣf − (Σ+1)tΣf

= 2〈Σ+χF+ ,χtF+(Σ+)tΣf〉 since Σ+1 = 0

≤ 2‖ΣχF+‖2 ·
∥∥Σ+f

∥∥
2

by Cauchy-Schwartz

= 2
(
χF+L+χF+ · f tLf

)1/2
.

Squaring both sides and recalling that χF+L+χF+ = w(δ+F+) gives the desired result. �
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Proof of Lemma 4.16. We prove Equation (4.18) only; Equation (4.19) follows similarly. Set

M = Σ+(Σ+)t and E = {x : xtMx = (n − 1)/n}. The claim is that E(S) = E. First we

demonstrate that the vertices of S are contained in E. Noticing that J2 = nJ, compute

σtiMσi = χtiΣ
tΣ+(Σ+)tΣχi = χti

(
I− 1

n
J

)2

χi = χti

(
I− 1

n
J

)
χi = 1− 1

n
,

so indeed the vertices σi are contained in E. Now, define the hyperplane

H def
=

{
x : xtMσi = − 1

n

}
.

We claim that H is the plane containing the points {σj}j 6=i. Indeed, consider σj for some

fixed j 6= i. Then, as above

σtjMσi = χtj

(
I− 1

n
J

)
χi = − 1

n
.

It remains to show that H is parallel to the tangent plane of E at the point σi. But this

tangent plane is defined by the equation [Fie05]

xtMσi =
n− 1

n
,

which is clearly parallel to H. This completes the proof. �

Proof of Lemma 4.18. Set ζ = 1
2(LG∆ + 1/n) and r = ∆tLG∆4Rtot

G /n2. Let us expand

x in barycentric coordinates in accordance with Lemma 2.10. Put x =
∑

i αiσi where∑
i αi =

∑
i βi = 1. Let α = (α1, . . . , αn). The claim is that the circumscribed sphere of S+

is given by the equation

‖x−Σζ‖22 =
1

4
r, (A.4)

and that this equation is equivalent to αtDα = 0. Note first that due to Equation 2.18,

〈1,−2ζ〉 = 〈1,−LG∆− 2
n1〉 = −2, so ζ = (ζ1, . . . , ζn−1) obeys

∑
i ζi = 1. The left hand side

of (A.4) then becomes

〈x−Σζ,x−Σζ〉 =
∑
i,j∈[n]

(αi − ζi)(αj − ζj)〈σi,σj〉

=
∑
i,j∈[n]

(αi − ζi)(αj − ζj)〈σi − σn,σj − σn〉,
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where the last line uses that σn
∑

i(αi − ζi) = 0. Observing that

〈σi − σn,σj − σn〉 =
1

2
(‖σi − σn‖22 + ‖σj − σn‖22 − ‖σi − σj‖

2
2),

we may proceed as

〈x−Σζ,x−Σζ〉 =
1

2

(∑
j

(αj − ζj)
∑
i

(αi − ζi)‖σi − σn‖22

+
∑
i

(αi − ζi)
∑
j

(αj − ζj)‖σj − σn‖22

−
∑
i,j

(αi − ζi)(αj − ζj)‖σi − σj‖22

)
= −1

2

∑
i,j

(αi − ζi)(αj − ζj)‖σi − σj‖22. (A.5)

Recalling the block matrix equation (2.18) for hyperacute simplices, for all i we have

1(∆tLG∆ + 4Rtot
G /n2)−D(LG∆ + 21/n) = 0,

i.e., r1− 2D = 0. Hence

〈D(i, ·), ζ〉 =
r

2
.

Using this, we rewrite the summation on the right hand side of (A.5) as

∑
i,j

(αi − ζi)(αj − ζj)D(i, j) =
∑
i

(αi − ζi)
(∑

j

αjD(i, j)−
∑
j

αjD(i, j)

)
=
∑
j

αj
∑
i

(αi − ζi)D(i, j)− 1

2
r
∑
i

(αi − ζi)

=
∑
j

αj

(∑
i

αiD(i, j)− 1

2
r

)
=
∑
i,j

αiD(i, j)αj −
1

2
r = αtDα− 1

2
r.

The equation of the sphere in (A.4) now becomes 1
4r −

1
2α

tDα = 1
4r, i.e., αtDα = 0 as

was claimed. Now, to see that this sphere contains the vertices of S+, {σ+
i }, we need only

note that the barycentric coordinate of σ+
` is χ` and that χt`Dχ` =

∑
i,j χ`(i)D(i, j)χ`(j) =

D(`, `) = 0. �
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§A.4. Chapter 5

Proof of Observation 5.2. Let A be a purported sublinear time algorithm which performs

this task. Let x,y ∈ Rn be two inputs to A. Assume they both contain no zero entries

(A claims to work for all vectors). Since A is sublinear, there exists some i ∈ [n] such that

A does not examine x(i). Therefore, we may vary x(i) without changing A’s output. If A
output “yes”, meaning that it believes x and y to be orthogonal, put

x(i) =
1−

∑
j 6=i x(j)y(j)

y(i)
.

Then 〈x,y〉 = 1, so they are are not orthogonal. Similarly, if A output “no”, then put

x(i) = −
∑

j 6=i x(j)y(j)

y(j)
,

so that 〈x,y〉 = 0. Therefore, A cannot be correct on all inputs. �
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Intuition Behind Effective Resistance

Here we provide a derivation of effective resistance using the analogy of a graph as an electrical

network.

Given an undirected, weighted graph G = (V,E,w), place an arbitrary orientation the

edges (say, for example, (i, j) is directed from i to j iff i < j) and for each edge e, let e− ∈ V
denote the vertex at which e ends, and e+ the vertex at which it begins. Set

B(e, i) =


1 if i = e+,

−1 if i = e−,

0 otherwise,

(B.1)

or, equivalently, B(e, i) = (χ(i=e+)−χ(i=e−)). We will consider G as an electrical network. To

do this, we imagine placing a resistor of resistance 1/w(e) on each edge e. Edges thus carry

current between the nodes and, in general, higher weighted edges will carry more current.

An electrical flow f : E → R≥0 on G assigns a current to each edge e and respects, roughly

speaking, Kirchoff’s current law and Ohm’s law. More precisely, let e be a vector describing

the amount of current injected at each node. By Kirchoff’s law, the amount of current passing

through a vertex i must be conserved. That is,∑
e:i=e+

f(e)−
∑
e:i=e−

f(e) = e(i),

or, more succinctly,

Btf = e. (B.2)

Note that this property is also called flow conversation in the network flow literature. By

Ohm’s law, the amount of flow across an edge is proportional to the difference of potential

at its endpoints. The constant of proportionality is the inverse of the resistance of that edge,

i.e., the weight of the edge. Let ρ : V → R≥0 describe the potential at each vertex. For

e = (i, j) with i = e+, j = e−, ρ is defined by the relationship

f(e) = w(e)(ρ(i)− ρ(j)) = w(e)(B(e, i)ρ(i) +B(e, j)ρ(j)),
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so that

f = WBρ. (B.3)

Combining (B.2) and (B.3) we see that e = Btf = BtWBρ = LGρ, and so ρ = L+
Ge

whenever 〈e,1〉 = 0 (recall that L+
G is the inverse of LG in the space span(1)t).

The effective resistance of an edge e = (i, j) is the potential difference induced across the

edge when one unit of current is injected at i and extracted at j. That is, for e = χi − χj ,
we want to measure ρ(i)− ρ(j). We do this by noticing that

ρ(i)− ρ(j) = 〈χi,ρ〉 − 〈χj ,ρ〉 = 〈χi − χj ,L+
Ge〉 = L+

G(χi − χj).

Note that here we’ve relied on the fact that χi − χj ⊥ 1. This gives rise to Definition 2.2.
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Figures

Figure C.1: The six unique unweighted graphs on four vertices, up to isomorphism, and a
comparison of all of their simplices. Below each graph in the first row are its two combi-
natorial simplices (SG and S+

G ), then its two normalized simplices (ŜG and Ŝ+
G ), then its

combinatorial and normalized simplex (SG and ŜG), followed in the final row by the two
inverse simplices (S+

G and Ŝ+
G ). The combinatorial simplex and its inverse are coloured blue

and red respectively, and the normalized simplex and its inverse are in green and yellow
respectively. The relative size of the the simplices in each subfigure are to scale but the same
scale is not maintained across figures.
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