A variational approach to sub-Gaussian self-normalized bounds
February 28, 2025
\[\newcommand{\E}{\mathbb{E}} \newcommand{\calF}{\mathcal{F}} \renewcommand{\Re}{\mathbb{R}} \newcommand{\la}{\langle} \newcommand{\ra}{\rangle} \newcommand{\d}{\text{d}} \newcommand{\kl}{\text{KL}} \renewcommand{\Pr}{\mathbb{P}} \newcommand{\Tr}{\text{Tr}}\]
Self-normalized bounds for martingales arise naturally in various statistical tasks, from regression to bandits. De La Pena and coauthors did a tremendous amont of work on self-normalized bounds in the 90s and 2000s, and in 2011 Abbasi-Yadkori et al applied some of their results to contextual bandits. The resulting concentration inequality has become a famous self-normalized bound.
To state it, let \(X_1,X_2,\dots\) be a sequence of vectors in \(\Re^d\). Let \(\eta_1,\eta_2,\dots\) be a sequence of mean-zero, conditionally \(\sigma^2\)-sub-Gaussian random variables in \(\Re\), i.e.,
\[\E_{t-1} \exp(\lambda \eta_t ) \leq \exp\left(\psi(\lambda\sigma)\right),\]for all \(\lambda\in\Re\) where \(\psi(u) = u^2/2\) and \(\E_{t-1}[\cdot]\equiv \E[\cdot \vert \calF_{t-1}]\) and \(\calF=(\calF_t)_{t\geq 1}\) is some filtration. We assume that \((X_t)\) is \(\calF\)-predictable, meaning that \(X_t\) is \(\calF_{t-1}\)-predictable. In the bandit setting, \(X_t\) is the action chosen at time \(t\), which is made with the information available at time \(t-1\). \(\eta_t\) is the noise accompanying the observed reward.
Set
\[S_t = \sum_{k\leq t} \eta_k X_k, \quad V_t = \sum_{k\leq t} X_kX_k^t.\]Let \(V_0\) be some PSD matrix. The Abbasi-Yadkori bound reads, for all stopping times \(\tau\),
\[\|S_\tau\|_{(V_\tau + V_0)^{-1}}^2 \leq 2\sigma^2 \log\left(\frac{\det(V_\tau + V_0)}{\delta\det(V_0)}\right), \tag{1} \label{eq:abbasi_bound}\]where \(\|Y\|^2_{A} = Y^t A Y\). If the rewards we observe are of the form \(Y_t = \la \theta^*, X_t\ra + \eta_t\), \eqref{eq:abbasi_bound} allows us to derive confidence sets for \(\theta^*\).
Abbasi-Yadkori et al use the method of mixtures to prove their bound. Recently, Ingvar Ziemann noticed that one can recover the result using the variational approach to nconcentration. I’m very curious about the limits of this approach, so I want to explore how this is done.
Let’s recall the main template used in the variational approach to concentration.
Proposition 1. Fix a parameter space \(\Theta\), and let \(M(\theta)\equiv (M_t(\theta))\) be a nonnegative supermartingale with initial value 1 for each \(\theta\in \Theta\) with respect to a filtration \(\calF\). For any data-free distribution \(\pi\) over \(\Theta\), with probability \(1-\delta\), for any (data-dependent) distribution \(\rho\) over \(\Theta\) and stopping-time \(\tau\),
\[\label{eq:template} \int M_t(\theta) \d\rho \leq \kl(\rho\|\nu) + \log(1/\delta). \tag{2}\]Let’s prove \eqref{eq:abbasi_bound} using this proposition. By virtue of the sub-Gaussianity of \(\eta_t\), we have
\[\E_{t-1} \exp( \eta_t \la \theta, X_t\ra - \psi(\sigma\la\theta, X_t\ra))\leq 1,\]implying that the process defined by these increments, namely
\[M_t(\theta) = \prod_{k\leq t} \exp\left\{\la \theta, \eta_k X_k\ra - \psi(\sigma\la \theta, X_k\ra) \right\} = \exp\left\{\la \theta, S_t\ra - \psi(\sigma \|\theta\|_{V_t})\right\},\]\(M_0(\theta) \equiv 1\), is a (nonnegative) supermartingale. (Note that here we’ve used that \(\sum_{k\leq t}\la \theta, X_k\ra^2 = \sum_k \la \theta, X_kX_k^t \theta\ra = \|\theta\|_{V_t}^2\).) Define
\[U_t = \sigma^2(V_t + V_0),\]and observe that we can rewrite
\[\begin{align} 2\la \theta, S_t\ra - \sigma^2\|\theta\|_{V_t}^2 &= 2\theta^t S_t\theta - \theta^t U_t\theta + \sigma^2\theta^t V_0\theta \\ &= S_t U_t^{-1}S_t - \theta^t U_t\theta + 2\theta^t U_tU_t^{-1}S_t - S_t^t U_t^{-1} U_tU_t^{-1}S_t + \sigma^2\theta^tV_0\theta \\ &= S_t^t U_t^{-1} S_t - (\theta - U_t^{-1}S_t)^tU_t(\theta - U_t^{-1}S_t) + \sigma^2\theta^tV_0\theta \\ &= \|S_t\|^2_{U_t^{-1}} - \|\theta - U_t^{-1}S_t\|_{U_t}^2 + \sigma^2\|\theta\|^2_{V_0}. \end{align}\]Therefore,
\[M_t(\theta) = \exp\left\{ \frac{1}{2}\|S_t\|^2_{U_t^{-1}} - \frac{1}{2}\|\theta - U_t^{-1}S_t\|_{U_t}^2 + \frac{\sigma^2}{2}\|\theta\|^2_{V_0}\right\}.\]Fix a data-free distribution \(\pi\) over \(\Re^d\) and let \(\rho\) be a Gaussian with mean \(\mu_\rho\) and covariance \(\Sigma_\rho\). Then
\[\begin{align} \int \log M_t(\theta) \d\rho &= \frac{1}{2}\|S_t\|_{U_t^{-1}} - \frac{1}{2}\int \|\theta - U_t^{-1} S_t\|_{U_t}^2 \d\rho + \frac{\sigma^2}{2}\int \theta^tV_0\theta \d\rho \\ &= -\frac{1}{2}\int (\theta^t U_t\theta - 2\theta^t S_t)\d\rho + \frac{\sigma^2}{2}\left(\mu_\rho^t V_0\mu_\rho + \Tr(V_0\Sigma_\rho)\right) \\ &= -\frac{1}{2}\left( \mu_\rho^t U_t\mu_\rho + \Tr(U_t \Sigma_\rho) - 2\mu_\rho^t S_t\right) + \frac{\sigma^2}{2}\left( \mu_\rho^tV_0\mu_\rho + \Tr(V_0\Sigma_\rho)\right) \end{align}\]Consider taking \(\mu_\rho = U_t^{-1} S_t\). Then the above simplifies to
\[\begin{align} \int\log M_t(\theta) \d\rho &= \frac12\left(S_t^t U_t^{-1} S_t - \Tr(U_t\Sigma_\rho) + \sigma^2(S_t^t U_t^{-1}V_0U_t^{-1} S_t + \Tr(V_0\Sigma_\rho))\right) \\ &= \frac12\left(S_t^t U_t^{-1} S_t - \sigma^2\Tr(V_t\Sigma_\rho) + \sigma^2S_t^t U_t^{-1}V_0U_t^{-1} S_t \right), \tag{3} \label{eq:ut2} \end{align}\]since \(\Tr(U_t \Sigma_\rho ) = \sigma^2\Tr(V_t\Sigma_\rho) + \sigma^2\Tr(V_0 \Sigma_\rho)\). Now let’s choose \(\pi\). If we take \(\pi\) to be normal with mean 0 and covariance \(\Sigma_\pi\) then, using the standard formula for KL-divergence,
\[\begin{align} \kl(\rho\|\pi) &= \frac12\left\{\Tr(\Sigma_\pi^{-1}\Sigma_\rho) + \mu_\rho^t \Sigma_\pi^{-1}\mu_\rho - d + \log\left(\frac{\vert\Sigma_\pi\vert}{\vert \Sigma_\rho\vert}\right) \right\} \\ &= \frac12\left\{\Tr(\Sigma_\pi^{-1}\Sigma_\rho) + S_t^t U_t^{-1} \Sigma_\pi^{-1} U_t^{-1}S_t - d + \log\left(\frac{\vert\Sigma_\pi\vert}{\vert \Sigma_\rho\vert}\right) \right\}. \end{align}\]In order to cancel out the term \(\sigma^2 S^t U_t^{-1}V_0 S_t\) in \eqref{eq:ut2}, we should choose \(\Sigma_\pi^{-1} = \sigma^2 V_0\) (this is data-free hence legal). In this case, our guarantee in Proposition 1 reads, for all stopping times \(\tau\),
\[\begin{align} \frac{1}{2} \|S_\tau\|_{U_\tau^{-1}}^2 &\leq \frac{1}{2}\left(\sigma^2\Tr(V_\tau\Sigma_\rho) + \sigma^2\Tr(V_0 \Sigma_\rho) -d + \log(\vert V_0^{-1}\vert/ \vert \Sigma_\rho\vert) \right) + \log(1/\delta) \\ &= \frac{1}{2}\left(\Tr(U_\tau\Sigma_\rho) -d + \log(\vert V_0^{-1}\vert/ \vert \Sigma_\rho\vert) \right) + \log(1/\delta) \end{align}\]Consider choosing \(\Sigma_\rho = U_\tau^{-1}\). Then \(\Tr(U_t \Sigma_\rho) =d\), so the above bound becomes
\[\begin{align} \|S_\tau\|_{U_\tau^{-1}}^2 &\leq \log\left(\frac{\det U_\tau}{\det \sigma^2 V_0}\right) + 2 \log(1/\delta) \\ &= \log\left(\frac{\det (V_\tau + V_0)}{\det V_0}\right) + 2 \log(1/\delta). \end{align}\]Noticing that \(\|S_\tau\|_{U_\tau^{-1}}^2 = \sigma^{-2}\| S_\tau \|_{(V_\tau + V_0)^{-1}}^2\), we recover (a slightly tighter version of) \eqref{eq:abbasi_bound}.
Back to all notes